Rheological evaluation of inter-grade and inter-batch variability of sodium alginate.

AAPS PharmSciTech

Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.

Published: December 2010

Polymeric excipients are often the least well-characterized components of pharmaceutical formulations. The aim of this study was to facilitate the QbD approach to pharmaceutical manufacturing by evaluating the inter-grade and inter-batch variability of pharmaceutical-grade polymeric excipients. Sodium alginate, a widely used polymeric excipient, was selected for evaluation using appropriate rheological methods and test conditions. The materials used were six different grades of sodium alginate and an additional ten batches of one of the grades. To compare the six grades, steady shear measurements were conducted on solutions at 1%, 2%, and 3% w/w, consistent with their use as thickening agents. Small-amplitude oscillation (SAO) measurements were conducted on sodium alginate solutions at higher concentrations (4-12% w/w) corresponding to their use in controlled-release matrices. In order to compare the ten batches of one grade, steady shear and SAO measurements were performed on their solutions at 2% w/w and 8% w/w, respectively. Results show that the potential interchangeability of these different grades used as thickening agents could be established by comparing the apparent viscosities of their solutions as a function of both alginate concentration and shear conditions. For sodium alginate used in controlled-release formulations, both steady shear behavior of solutions at low concentrations and viscoelastic properties at higher concentrations should be considered. Furthermore, among batches of the same grade, significant differences in rheological properties were observed, especially at higher solution concentrations. In conclusion, inter-grade and inter-batch variability of sodium alginate can be determined using steady shear and small-amplitude oscillation methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3011064PMC
http://dx.doi.org/10.1208/s12249-010-9547-0DOI Listing

Publication Analysis

Top Keywords

sodium alginate
24
steady shear
16
inter-grade inter-batch
12
inter-batch variability
12
variability sodium
8
alginate polymeric
8
polymeric excipients
8
ten batches
8
measurements conducted
8
solutions w/w
8

Similar Publications

Insights on the role of cryoprotectants in enhancing the properties of bioinks required for cryobioprinting of biological constructs.

J Mater Sci Mater Med

January 2025

Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India.

Preservation and long-term storage of readily available cell-laden tissue-engineered products are major challenges in expanding their applications in healthcare. In recent years, there has been increasing interest in the development of off-the-shelf tissue-engineered products using the cryobioprinting approach. Here, bioinks are incorporated with cryoprotective agents (CPAs) to allow the fabrication of cryopreservable tissue constructs.

View Article and Find Full Text PDF

All-Optically Controlled Memristive Device Based on CuO/TiO Heterostructure Toward Neuromorphic Visual System.

Research (Wash D C)

January 2025

Key Laboratory for UV Light-Emitting Materials and Technology (Ministry of Education), College of Physics, Northeast Normal University, Changchun, China.

The optoelectronic memristor integrates the multifunctionalities of image sensing, storage, and processing, which has been considered as the leading candidate to construct novel neuromorphic visual system. In particular, memristive materials with all-optical modulation and complementary metal oxide semiconductor (CMOS) compatibility are highly desired for energy-efficient image perception. As a p-type oxide material, CuO exhibits outstanding theoretical photoelectric conversion efficiency and broadband photoresponse.

View Article and Find Full Text PDF

Miniaturized Liver Disease Mimics to Gain Insights into MMP Expression during Disease Progression.

ACS Biomater Sci Eng

January 2025

Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver conditions, ranging from hepatic steatosis to steatohepatitis, fibrosis, and severe outcomes such as cirrhosis or cancer. The progression from hepatic steatosis to fibrosis involves significant extracellular matrix (ECM) remodeling, characterized by increased collagen deposition and cross-linking of ECM proteins, causing increased tissue stiffness and altered MMP expression patterns. Dysregulated MMP expression and extracellular acidosis are key contributors to NAFLD progression.

View Article and Find Full Text PDF

Objectives: This study focuses on both the formulation of bio-based microspheres containing fampridine for the treatment of multiple sclerosis and provides an alternative to the commercially available product (Fampyra 10 mg, Biogen).

Materials And Methods: The encapsulation of fampridine was achieved using polyvinyl alcohol (PVA) and sodium alginate (Na-Alg) polymers. Glutaraldehyde (GA) and hydrochloric acid (HCI) were used as crosslinking agents.

View Article and Find Full Text PDF

3D printed Aloe barbadensis loaded alginate-gelatin hydrogel for wound healing and scar reduction: In vitro and in vivo study.

Int J Biol Macromol

January 2025

Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India. Electronic address:

Wounds are one of the most critical clinical issues in plastic surgery repair and restoration. Conventional wound dressing materials cannot absorb enough wound exudates and shield the site from microbial infection. Also, despite their healing prowess, bioactive molecules from medicinal plants are less bioavailable at the wound sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!