Oceanic crust comprises the largest hydrogeologic reservoir on Earth, containing fluids in thermodynamic disequilibrium with the basaltic crust. Little is known about microbial ecosystems that inhabit this vast realm and exploit chemically favorable conditions for metabolic activities. Crustal samples recovered from ocean drilling operations are often compromised for microbiological assays, hampering efforts to resolve the extent and functioning of a subsurface biosphere. We report results from the first in situ experimental observatory systems that have been used to study subseafloor life. Experiments deployed for 4 years in young (3.5 Ma) basaltic crust on the eastern flank of the Juan de Fuca Ridge record a dynamic, post-drilling response of crustal microbial ecosystems to changing physical and chemical conditions. Twisted stalks exhibiting a biogenic iron oxyhydroxide signature coated the surface of mineral substrates in the observatories; these are biosignatures indicating colonization by iron oxidizing bacteria during an initial phase of cool, oxic, iron-rich conditions following observatory installation. Following thermal and chemical recovery to warmer, reducing conditions, the in situ microbial structure in the observatory shifted, becoming representative of natural conditions in regional crustal fluids. Firmicutes, metabolic potential of which is unknown but may involve N or S cycling, dominated the post-rebound bacterial community. The archaeal community exhibited an extremely low diversity. Our experiment documented in situ conditions within a natural hydrological system that can pervade over millennia, exemplifying the power of observatory experiments for exploring the subsurface basaltic biosphere, the largest but most poorly understood biotope on Earth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217339 | PMC |
http://dx.doi.org/10.1038/ismej.2010.157 | DOI Listing |
The aquifer in the subseafloor igneous basement is a massive, continuous microbial substrate, yet sparingly little is known about life in this habitat. The work to date has focused largely on describing microbial diversity in the young basement (<10 Ma), where the basaltic crust is still porous and fluid flow through it is active. Here, we test the hypothesis that microbial life exists in subseafloor basement >65 Ma using samples collected from the Louisville Seamount Chain via seafloor drilling.
View Article and Find Full Text PDFNature
January 2025
Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA.
Yellowstone Caldera is one of the largest volcanic systems on Earth, hosting three major caldera-forming eruptions in the past two million years, interspersed with periods of less explosive, smaller-volume eruptions. Caldera-forming eruptions at Yellowstone are sourced by rhyolitic melts stored within the mid- to upper crust. Seismic tomography studies have suggested that a broad region of rhyolitic melt extends beneath Yellowstone Caldera, with an estimated melt volume that is one to four times greater than the eruptive volume of the largest past caldera-forming eruption, and an estimated melt fraction of 6-28 per cent.
View Article and Find Full Text PDFPeerJ
November 2024
Integrative Oceanography Division and Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States.
Mineral-rich hardgrounds, such as ferromanganese (FeMn) crusts and phosphorites, occur on seamounts and continental margins, gaining attention for their resource potential due to their enrichment in valuable metals in some regions. This study focuses on the Southern California Borderland (SCB), an area characterized by uneven and heterogeneous topography featuring FeMn crusts, phosphorites, basalt, and sedimentary rocks that occur at varying depths and are exposed to a range of oxygen concentrations. Due to its heterogeneity, this region serves as an optimal setting for investigating the relationship between mineral-rich hardgrounds and benthic fauna.
View Article and Find Full Text PDFSci Rep
November 2024
The University Museum, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
Silica polymorphs occur under various pressures and temperature conditions, and their characteristics can be used to better understand the complex metamorphic history of planetary materials. Here, we conducted isothermal heating experiments of silica polymorphs in basaltic eucrites to assess their formation and stability. We revealed that each silica polymorph exhibits different metamorphic responses: (1) Quartz recrystallizes into cristobalite when heated at ≥ 1040 °C.
View Article and Find Full Text PDFNatl Sci Rev
November 2024
Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China.
The Chang'E-6 (CE-6) mission successfully achieved return of the first samples from the far side of the Moon. The sampling site of CE-6 is located in the South Pole-Aitken (SPA) basin-the largest, deepest and oldest impact basin on the Moon. The 1935.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!