Background And Objectives: Myocardial hypertrophy is a common clinical finding leading to heart failure and sudden death. Mitofusin 2 (Mfn2), a hyperplasia suppressor protein, is downregulated in hypertrophic heart. This study examined the role of Mfn2 in myocardial hypertrophy and its potential signal pathway.

Methods And Results: In in vitro studies, neonatal cardiac myocytes were isolated and cultured. Incubation of cultured cardiomycytes with angiotensin II (Ang II) inhibited gene expression of Mfn2; induced cell hypertrophy and protein synthesis; and activated protein kinase Akt. Pretreatment of cells with AdMfn2-a replication-deficient adenoviral vector encoding rat Mfn2 gene-upregulated Mfn2 expression and subsequently attenuated Ang II-induced cell hypertrophy; protein synthesis; and Akt activation. In in vivo studies, direct gene delivery of AdMfn2 into myocardium decreased the infusion of Ang II-induced atrial natriuretic factor (ANF, a hypertrophic marker) expression and cardiomyocyte cross-sectional area. Consistently, upregulation of Mfn2 in myocardium decreased the thicknesses of anterior and posterior walls of left ventricle (LV) and the ratio of LV mass/body weight in Ang II-treated rats. Of note, AdGFP (control for AdMfn2) did not affect the effects of Ang II in vitro or in vivo.

Conclusions: Upregulation of Mfn2 inhibits Ang II-induced myocardial hypertrophy. In this process, inhibition of Akt activation seems to play a significant role. These findings indicate Mfn2 is a critical protein in modulating myocyte hypertrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1074248410385683DOI Listing

Publication Analysis

Top Keywords

myocardial hypertrophy
16
ang ii-induced
12
ii-induced myocardial
8
mfn2
8
cell hypertrophy
8
hypertrophy protein
8
protein synthesis
8
akt activation
8
myocardium decreased
8
upregulation mfn2
8

Similar Publications

Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes.

View Article and Find Full Text PDF

Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Background: Myocardial disease is an important component of the wide field of cardiovascular disease. However, the phenomenon of multiple myocardial diseases in a single patient remains understudied.

Aim: To investigate the prevalence and impact of myocarditis in patients with genetic cardiomyopathies and to evaluate the outcomes of myocarditis treatment in the context of cardiomyopathies.

View Article and Find Full Text PDF

Arterial hypertension has a high prevalence in the population and is considered both a cardiovascular disease and an important risk factor for the development of other cardiovascular diseases. Tea consumption shows antihypertensive effects due to its composition in terms of bioactive substances such as flavan-3-ols and xanthines. The aim of this study was to assess the possible beneficial effects of two tea extracts, one of white tea (ADM White Tea; WTE) and another one composed of a mixture of black tea and green tea (ADM Tea Complex; CTE), on the cardiovascular alterations induced by angiotensin II (AngII) infusion in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!