γ-Secretase is an intramembrane-cleaving protease that is responsible for the generation of amyloid-β peptides linked to the pathogenesis of Alzheimer's disease. Using a substituted cysteine accessibility method, we have previously shown that the hydrophilic "catalytic pore" structure of γ-secretase is formed by the transmembrane domains (TMDs) 6, 7, and 9 of presenilin 1 (PS1), the catalytic subunit of γ-secretase, within the membrane. Here, we analyzed the structure in and around the first hydrophobic region, the putative TMD1, of PS1, of which the precise function as well as three-dimensional location within γ-secretase remained unknown. We found that TMD1 is located in proximity to the catalytic GxGD and PAL motifs within the C-terminal fragment of PS1, facing directly the catalytic pore. Competition experiments using known γ-secretase inhibitors suggested that the N-terminal region of TMD1 functions as a subsite during proteolytic action of the γ-secretase. Intriguingly, binding of inhibitors affected water accessibility of residues at the membrane border of TMD1, suggesting the possibility of a dynamic motion of TMD1 during the catalytic process. Our results provide mechanistic insights into the functional role of TMD1 of PS1 in the intramembrane-cleaving activity of the γ-secretase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633739PMC
http://dx.doi.org/10.1523/JNEUROSCI.3318-10.2010DOI Listing

Publication Analysis

Top Keywords

catalytic pore
8
γ-secretase
8
structure γ-secretase
8
tmd1 ps1
8
tmd1
6
catalytic
5
participation transmembrane
4
transmembrane domain
4
domain presenilin
4
presenilin catalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!