Caveolin-1 modulates the ability of Ewing's sarcoma to metastasize.

Mol Cancer Res

Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals-3 Planta Gran via s/n Km. 2, 7, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.

Published: November 2010

AI Article Synopsis

  • Metastasis is a critical stage in tumor progression, responsible for up to 90% of solid tumor-related deaths, and the study focuses on how Caveolin-1 (CAV1) influences metastasis in Ewing's sarcoma family tumors (ESFT).
  • Analysis of tumor samples revealed that all metastatic ESFT had high levels of CAV1 expression, indicating a potential correlation between CAV1 and enhanced metastatic ability.
  • Experiments showed that reducing CAV1 expression in ESFT cells significantly decreased their ability to migrate and invade, and in mice, CAV1-knockdown cells had either delayed or no lung metastasis, pointing to CAV1's crucial role in regulating these cancer processes through mechanisms such

Article Abstract

Metastasis is the final stage of tumor progression and is thought to be responsible for up to 90% of deaths associated with solid tumors. Caveolin-1 (CAV1) regulates multiple cancer-associated processes related to malignant tumor progression. In the present study, we tested the hypothesis that CAV1 modulates the metastatic ability of cells from the Ewing's sarcoma family of tumors (ESFT). First, we analyzed the expression of CAV1 by immunostaining a tissue microarray containing 43 paraffin-embedded ESFT tumors with known EWS translocations. Even though no evidence was found for a significant association between CAV1 expression and stage, size or tumor site, all metastatic samples (10 of 10) had significantly high CAV1 expression, suggesting that high CAV1 content could positively contribute to enhance ESFT metastasis. To determine the effect of CAV1 on the migratory and invasive capabilities of ESFT cells, we knocked down CAV1 expression in TC252 and A673 cells by stably transfecting a previously validated shRNA construct. In vitro, migration and invasion assays showed that for both cell lines, CAV1 knocked-down cells migrated and invaded significantly less (P ≤ 0.01) than control cells. Moreover, control A673 cells introduced into BALB/c nude mice by tail vein injection strongly colonized the lungs. In contrast, animals injected with CAV1 knocked-down cells showed either no incidence of metastasis or developed lung metastases after a significant delay (P < 0.0001). Finally, we show that the molecular mechanisms by which CAV1 carries out its key role in regulating ESFT metastasis involve matrix metalloproteinase production and activation as well as the control of the expression of SPARC, a known determinant of lung colonization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679656PMC
http://dx.doi.org/10.1158/1541-7786.MCR-10-0060DOI Listing

Publication Analysis

Top Keywords

cav1 expression
12
cav1
11
ewing's sarcoma
8
tumor progression
8
high cav1
8
esft metastasis
8
a673 cells
8
cav1 knocked-down
8
knocked-down cells
8
cells
7

Similar Publications

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

A transcriptomic analysis of the interplay of ferroptosis and immune filtration in endometriosis and identification of novel therapeutic targets.

Comput Biol Chem

January 2025

Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India. Electronic address:

Endometriosis is an inflammatory disease, involving immune cell infiltration and production of inflammatory mediators. Ferroptosis has recently been recognized as a mode of controlled cell death and the iron overload and peroxidative environment prevailing in the ectopic endometrium facilitates the occurrence of ferroptosis. In the current investigation, gene expression data was obtained from the dataset GSE7305.

View Article and Find Full Text PDF

Microplastics (MPs) in fish can cross the intestinal barrier and are often bioaccumulated in several tissues, causing adverse effects. While the impacts of MPs on fish are well documented, the mechanisms of their cellular internalization remain unclear. A rainbow-trout () intestinal platform, comprising proximal and distal intestinal epithelial cells cultured on an Alvetex scaffold, was exposed to 50 mg/L of MPs (size 1-5 µm) for 2, 4, and 6 h.

View Article and Find Full Text PDF

Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model.

View Article and Find Full Text PDF

Caveolin-1 mitigates the advancement of metabolic dysfunction-associated steatotic liver disease by reducing endoplasmic reticulum stress and pyroptosis through the restoration of cholesterol homeostasis.

Int J Biol Sci

January 2025

Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, which has the potential to advance to fibrosis. CAV1 has the effects of improving liver lipid deposition in MASLD, however, the potential mechanism is largely unknown. Here, we establish a MASLD mouse model in CAV1 knockout (KO) mice and perform transcriptome analysis on livers from mice to investigate the effects of CAV1 in MASLD progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!