A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Human homolog of Drosophila Hairy and enhancer of split 1, Hes1, negatively regulates δ-catenin (CTNND2) expression in cooperation with E2F1 in prostate cancer. | LitMetric

Background: Neuronal synaptic junction protein δ-catenin (CTNND2) is often overexpressed in prostatic adenocarcinomas but the mechanisms of its activation are unknown. To address this question, we studied the hypothesis that Hes1, human homolog of Drosophila Hairy and enhancer of split (Hes) 1, is a transcriptional repressor of δ-catenin expression and plays an important role in molecular carcinogenesis.

Results: We identified that, using a δ-catenin promoter reporter assay, Hes1, but not its inactive mutant, significantly repressed the upregulation of δ-catenin-luciferase activities induced by E2F1. Hes1 binds directly to the E-boxes on δ-catenin promoter and can reduce the expression of δ-catenin in prostate cancer cells. In prostate cancer CWR22-Rv1 and PC3 cell lines, which showed distinct δ-catenin overexpression, E2F1 and Hes1 expression pattern was altered. The suppression of Hes1 expression, either by γ-secretase inhibitors or by siRNA against Hes1, increased δ-catenin expression. γ-Secretase inhibition delayed S/G2-phase transition during cell cycle progression and induced cell shape changes to extend cellular processes in prostate cancer cells. In neuroendocrine prostate cancer mouse model derived allograft NE-10 tumors, δ-catenin showed an increased expression while Hes1 expression was diminished. Furthermore, E2F1 transcription was very high in subgroup of NE-10 tumors in which Hes1 still displayed residual expression, while its expression was only moderately increased in NE-10 tumors where Hes1 expression was completely suppressed.

Conclusion: These studies support coordinated regulation of δ-catenin expression by both the activating transcription factor E2F1 and repressive transcription factor Hes1 in prostate cancer progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009707PMC
http://dx.doi.org/10.1186/1476-4598-9-304DOI Listing

Publication Analysis

Top Keywords

prostate cancer
24
hes1 expression
16
expression
12
δ-catenin expression
12
ne-10 tumors
12
hes1
11
δ-catenin
10
human homolog
8
homolog drosophila
8
drosophila hairy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!