Background: Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa). To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation.

Results: Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis.

Conclusions: These results reveal significant divergence between Arabidopsis and rice, in terms of the abiotic stress response and its regulation. Both plants are shown to employ unique combinations of genes to achieve growth and stress responses. Comparison of these networks provides a more rational approach to translational studies that is based on the response observed in these two diverse plant models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095337PMC
http://dx.doi.org/10.1186/1471-2229-10-262DOI Listing

Publication Analysis

Top Keywords

gene orthology
12
specific transcripts
12
overlap terms
12
stress
8
stress responsive
8
oryza sativa
8
arabidopsis thaliana
8
arabidopsis rice
8
transcripts rice
8
rice arabidopsis
8

Similar Publications

Background: East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. We set out to bridge this gap and to understand the interactions between TEs and their cichlid hosts.

View Article and Find Full Text PDF

getphylo: rapid and automatic generation of multi-locus phylogenetic trees.

BMC Bioinformatics

January 2025

The Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark.

Background: The increasing amount of genomic data calls for tools that can create genome-scale phylogenies quickly and efficiently. Existing tools rely on large reference databases or require lengthy de novo calculations to identify orthologues, meaning that they have long run times and are limited in their taxonomic scope. To address this, we created getphylo, a python tool for the rapid generation of phylogenetic trees de novo from annotated sequences.

View Article and Find Full Text PDF

Microbial Genome Database for Comparative Analysis (MBGD) is a comprehensive ortholog database encompassing published complete microbial genomes. The ortholog tables in MBGD are constructed in a hierarchical manner. The top-level ortholog table is now constructed from 1,812 genus-level pan-genomes, 6,268 species-level pan-genomes, and 34,079 genomes in total.

View Article and Find Full Text PDF

Sleep is a universally conserved behavior whose origin and evolutionary purpose are uncertain. Using phylogenomics, this article investigates the evolutionary foundations of sleep from a never before used perspective. More specifically, it identifies orthologs of human sleep-related genes in the Lokiarchaeota of the Asgard superphylum and examines their functional role.

View Article and Find Full Text PDF

First introduced in 2021, MetOrigin has quickly established itself as a powerful web server to distinguish microbial metabolites and identify the bacteria responsible for specific metabolic processes. Building on the growing understanding of the interplay between the microbiome and metabolome, and in response to user feedback, MetOrigin has undergone a significant upgrade to version 2.0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!