1. Urocortin-2 (Ucn2) is a vasoactive peptide belonging to the corticotrophin-releasing factor (CRF) family that has potent cardiovascular actions. It has been suggested that Ucn2 participates in the pathophysiology of heart failure. However, little is known about the mechanisms underlying the action of Ucn2 in human coronary arteries. The aim of the present study was to assess the effects of Ucn2 on the vascular tone of human coronary arteries dissected from heart failure patients. 2. Human coronary arteries were dissected from the hearts of patients subjected to orthotopic heart transplantation. Coronary arteries were obtained from 17 patients with heart failure due to dilated cardiomyopathy of ischaemic origin in Stage III-IV of the New York Heart Association classification. Changes in tone were measured in arterial rings using force transducers. 3. Application of increasing concentrations of Ucn2 (5-20 nmol/L) to arterial rings precontracted with agonists induced dose-dependent relaxation of the coronary artery, which was independent of endothelial cell activation. Furthermore, the inhibition of the adenylyl cyclase by MDL-12 (100 nmol/L) and protein kinase A (PKA) by H89 (1 μmol/L) prevented Ucn2-mediated relaxation of coronary artery rings. 4. The results of the present study suggest that, in heart failure patients, Ucn2 could be useful in modulating coronary artery circulation independent of endothelial integrity through mechanisms that involve adenylyl cyclase activation and PKA stimulation. The findings warrant further investigation of the role of Ucn2 in circulatory regulation and its potential therapeutic application in heart disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1440-1681.2010.05466.x | DOI Listing |
Molecules
December 2024
Laboratory of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide despite significant improvements in diagnostic modalities. Emerging evidence suggests that erythrocytes, or red blood cells (RBCs), are one of the most important contributors to the events implicated in atherosclerosis, although the molecular mechanisms behind it are under investigation. We used NMR-based lipidomic technology to investigate the RBC lipidome in patients with CHD compared to those with normal coronary arteries (NCAs), all angiographically documented, and its correlation with coronary artery stenosis.
View Article and Find Full Text PDFBMC Cardiovasc Disord
January 2025
Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China.
Background: The personalized, free-breathing, heart rate-dependent computed tomography angiography (CTA) protocol can significantly reduce the utilization of contrast medium (CM). This proves especially beneficial for patients with chronic obstructive pulmonary disease (COPD) undergoing coronary artery CTA examinations.
Objective: The aim of this study was to evaluate the feasibility of a personalized CT scanning protocol that was tailored to patients' heart rate and free-breathing for coronary CTA of patients with COPD.
Clin Radiol
December 2024
Department of Radiology, Division of General Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria; Department of Radiology and Nuclear Medicine, University Hospital Wiener Neustadt, Corvinusring 3-5, 2700 Wiener Neustadt, Austria.
Aim: To assess the diagnostic potential of a noncoronary-dedicated pre-TAVR CT angiography (CTA) conducted as a prospective ECG-gated scan without premedication and standard cardiac reconstructions in evaluating bystander coronary artery disease (CAD) against invasive coronary angiography (ICA) as the gold standard.
Materials And Methods: This retrospective study included 232 patients who underwent both CTA and ICA as part of their pre-TAVR evaluation. Exclusion criteria included prior stent, pacemaker, coronary artery bypass, or valve surgery.
Med Image Anal
January 2025
Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland. Electronic address:
Eur Radiol
January 2025
Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
Objectives: The use of deep learning models for quantitative measurements on coronary computed tomography angiography (CCTA) may reduce inter-reader variability and increase efficiency in clinical reporting. This study aimed to investigate the diagnostic performance of a recently updated deep learning model (CorEx-2.0) for quantifying coronary stenosis, compared separately with two expert CCTA readers as references.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!