A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Conjugate mixture models for clustering multimodal data. | LitMetric

Conjugate mixture models for clustering multimodal data.

Neural Comput

INRIA Grenoble Rhône-Alpes, 38330 Montbonnot Saint-Martin, France.

Published: February 2011

The problem of multimodal clustering arises whenever the data are gathered with several physically different sensors. Observations from different modalities are not necessarily aligned in the sense there there is no obvious way to associate or compare them in some common space. A solution may consist in considering multiple clustering tasks independently for each modality. The main difficulty with such an approach is to guarantee that the unimodal clusterings are mutually consistent. In this letter, we show that multimodal clustering can be addressed within a novel framework: conjugate mixture models. These models exploit the explicit transformations that are often available between an unobserved parameter space (objects) and each of the observation spaces (sensors). We formulate the problem as a likelihood maximization task and derive the associated conjugate expectation-maximization algorithm. The convergence properties of the proposed algorithm are thoroughly investigated. Several local and global optimization techniques are proposed in order to increase its convergence speed. Two initialization strategies are proposed and compared. A consistent model selection criterion is proposed. The algorithm and its variants are tested and evaluated within the task of 3D localization of several speakers using both auditory and visual data.

Download full-text PDF

Source
http://dx.doi.org/10.1162/NECO_a_00074DOI Listing

Publication Analysis

Top Keywords

conjugate mixture
8
mixture models
8
multimodal clustering
8
proposed algorithm
8
clustering
4
models clustering
4
clustering multimodal
4
multimodal data
4
data problem
4
problem multimodal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!