The mycobacterial cell wall component lipoarabinomannan (LAM) has been described as one of the key virulence factors of Mycobacterium tuberculosis. Modification of the terminal arabinan residues of this lipoglycan with mannose caps in M. tuberculosis or with phosphoinositol caps in Mycobacterium smegmatis results in distinct host immune responses. Given that M. tuberculosis typically persists in the phagosomal vacuole after being phagocytosed by macrophages, we performed a proteomic analysis of that organelle after treatment of macrophages with LAMs purified from the two mycobacterial species. The quantitative changes in phagosomal proteins suggested a distinct role for mannose-capped LAM in modulating protein trafficking pathways that contribute to the arrest of phagosome maturation. Enlightened by our proteomic data, we performed further experiments to show that only the LAM from M. tuberculosis inhibits accumulation of autophagic vacuoles in the macrophage, suggesting a new function for this virulence-associated lipid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018347PMC
http://dx.doi.org/10.1021/pr100688hDOI Listing

Publication Analysis

Top Keywords

phagosome maturation
8
organelle membrane
4
membrane proteomics
4
proteomics reveals
4
reveals differential
4
differential influence
4
influence mycobacterial
4
mycobacterial lipoglycans
4
lipoglycans macrophage
4
macrophage phagosome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!