Assessing GHG emissions, ecological footprint, and water linkage for different fuels.

Environ Sci Technol

Mechanical Engineering Faculty, University of Campinas, PO Box 6122, 13083-970, Campinas, SP, Brazil.

Published: December 2010

Currently, transport is highly dependent on fossil fuels and responsible for about 23% of world energy-related GHG (greenhouse gas) emissions. Ethanol from sugar cane and corn emerges as an alternative for gasoline in order to mitigate GHG emissions. Additionally, deeper offshore drilling projects such as in the Brazilian Pre-Salt reservoirs and mining projects of nonconventional sources like Tar Sands in Canada could be a solution for supplying demand of fossil fuels in the short and midterm. Based on updated literature, this paper presents an assessment of GHG emissions for four different fuels: ethanol from sugar cane and from corn and gasoline from conventional crude oil and from tar sands. An Ecological Footprint analysis is also presented, which shows that ethanol from sugar cane has the lowest GHG emissions and requires the lowest biocapacity per unit of energy produced among these fuels. Finally, an analysis using the Embodied Water concept is made with the introduction of a new concept, the "CO(2)-Water", to illustrate the impacts of releasing carbon from underground to atmosphere and of the water needed to sequestrate it over the life cycle of the assessed fuels. Using this method resulted that gasoline from fossil fuels would indirectly "require" on average as much water as ethanol from sugar cane per unit of fuel energy produced.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es101187hDOI Listing

Publication Analysis

Top Keywords

ghg emissions
16
ethanol sugar
16
sugar cane
16
fossil fuels
12
ecological footprint
8
cane corn
8
tar sands
8
energy produced
8
fuels
7
emissions
5

Similar Publications

The climate impact of data centers is expected to increase due to rising demand for information and communication technology services. At the same time, the European Union aims for climate neutral data centers by 2030. To map potential developments of emissions associated with data centers to the year 2030, we develop a generic data center greenhouse gas (GHG) inventory in accordance with the GHG protocol.

View Article and Find Full Text PDF

Healthcare is a surprisingly large contributor to climate change, responsible for a significant quantity of global Greenhouse Gas (GHG) emissions. Global commitments to achieve "net zero" health systems, including by the federal government in Canada, suggest a growing need to understand and mobilize capacity for GHG emissions estimation across Canada's health sector. Our analysis highlights efforts by public sector healthcare organizations in Canada to estimate an increasingly broad scope of GHG emissions, building on longstanding efforts to report or reduce energy-related emissions from facilities.

View Article and Find Full Text PDF

In 2022, the European Union put forward the REPowerEU plan in response to Russia's invasion of Ukraine, aiming at enhancing short-term energy security by diversifying imports and reducing natural gas demand while accelerating the deployment of renewable alternatives in the long term. Here, we quantify the life cycle environmental impacts of both REPowerEU's short-term measures, including the controversial extended coal-fired power plant operations, and how the first year of the crisis was managed in practice. We find that the policy measures' impact on greenhouse gas (GHG) emissions would be negligible, although they could have detrimental effects on other environmental categories.

View Article and Find Full Text PDF

Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!