Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cytosolic free calcium ([Ca2+]i) and fusion of secondary granules with the phagosomal membrane (phagosome-lysosome fusion, P-L fusion) were assessed in single adherent human neutrophils during phagocytosis of C3bi-opsonized yeast particles. Neutrophils were loaded with the fluorescent dye fura2/AM and [Ca2+]i was assessed by dual excitation microfluorimetry. Discharge of lactoferrin, a secondary granule marker into the phagosome was verified by immunostaining using standard epifluorescence, confocal laser scanning and electron microscopy. In Ca2(+)-containing medium, upon contact with a yeast particle, a rapid rise in [Ca2+]i was observed, followed by one or more Ca2+ peaks (maximal value 1,586 nM and median duration 145 s): P-L fusion was detected in 80% of the cells after 5-10 min. In Ca2(+)-free medium the amplitude, frequency and duration of the [Ca2+]i transients were decreased (maximal value 368 nM, mostly one single Ca2+ peak and median duration 75 s): P-L fusion was decreased to 52%. Increasing the cytosolic Ca2+ buffering capacity by loading the cells with MAPT/AM led to a dose-dependent inhibition both of [Ca2+]i elevations and P-L fusion. Under conditions where basal [Ca2+]i was reduced to less than 20 nM and intracellular Ca2+ stores were depleted, P-L fusion was drastically inhibited while the cells ingested yeast particles normally. P-L fusion could be restored in Ca2(+)-buffered cells containing ingested particles by elevating [Ca2+]i with the Ca2(+)-ionophore ionomycin. The present findings directly indicate that although the ingestion step of phagocytosis is a Ca2(+)-independent event, [Ca2+]i transients triggered upon contact with opsonized particles are necessary to control the subsequent fusion of secondary granules with the phagosomal membrane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2200167 | PMC |
http://dx.doi.org/10.1083/jcb.110.5.1555 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!