Construction of an active composite with multicolor visible and broadband near-infrared luminescence is of great technological importance for various applications, including three-dimensional (3D) display, broadband telecommunication, and tunable lasers. The major challenge is the effective management of energy transfer between different dopants in composite. Here we present an in situ strategy for controlling energy transfer between multiple active centers via simultaneous tailoring of the evolution of phases and the distribution of dopants in the glassy phase. We show that the orderly precipitation of Ga(2)O(3) and LaF(3) nanocrystals and the selective incorporation of Ni(2+) and Er(3+) into them can be achieved. The obtained composite shows unique multicolor visible and broadband near-infrared emission. Possible mechanisms for the selective doping phenomenon are proposed, based on thorough structural and optical characterizations and crystal-field calculation results. Moreover, the strategy can be successfully extended to accomplish space-selective control of multicolor luminescence by employing the modulated stimulation field. The results suggest that the strategy could be applied to fabricate a multifunctional light source with a broad range of important host/activator combinations and to construct various types of three-dimensional active microstructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja108512g | DOI Listing |
BMC Cancer
January 2025
Department of Community & Family Medicine, All India Institute of Medical Sciences, 151001, Bathinda, Punjab, India.
Introduction: Existing evidence suggests a lower uptake of cervical cancer screening among Indian women. Coverage is lower in rural than urban women, but such disparities are less explored. So, the present study was conducted to explore the self-reported coverage of cervical cancer screening in urban and rural areas stratified by socio-demographic characteristics, determine the spatial patterns and identify any regional variations, ascertain the factors contributing to urban-rural disparities and those influencing the likelihood of screening among women aged 30-49 years factors residing in urban, rural, and overall Indian settings.
View Article and Find Full Text PDFBrain Inj
January 2025
Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control (NCIPC), Division of Injury Prevention, Atlanta, Georgia, USA.
Objectives: This manuscript describes traumatic brain injury (TBI)-related mortality in the United States during 2021, by geography, sociodemographic characteristics, mechanism of injury, and injury intent.
Method: Multivariable modeling of TBI mortality was performed to assess the simultaneous effect of multiple factors (geographic region, sex, race and ethnicity, and age) included in the model. Authors analyzed multiple-cause-of-death data from the National Vital Statistics System and included records when an International Classification of Diseases, Tenth Revision (ICD-10) underlying cause of death injury code, and a TBI-related ICD-10 diagnosis code were both listed.
Adv Sci (Weinh)
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
High-performance bulk graphite (HPBG) that simultaneously integrates superior electrical conductivity and excellent strength is in high demand, yet it remains critical and challenging. Herein a novel approach is introduced utilizing MOF-derived nanoporous metal/carbon composites as precursors to circumvent this traditional trade-off. The resulting bulk graphite, composed of densely packed multilayered graphene sheets functionalized with diverse cobalt forms (nanoparticles, single atoms, and clusters), exhibits unprecedented electrical conductivity in all directions (in-plane: 7311 S cm⁻¹, out-of-plane: 5541 S cm⁻¹) and excellent mechanical strength (flexural: 101.
View Article and Find Full Text PDFAppl Clin Inform
January 2025
Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany.
Objective: Commercially available large language models such as Chat Generative Pre-Trained Transformer (ChatGPT) cannot be applied to real patient data for data protection reasons. At the same time, de-identification of clinical unstructured data is a tedious and time-consuming task when done manually. Since transformer models can efficiently process and analyze large amounts of text data, our study aims to explore the impact of a large training dataset on the performance of this task.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea.
This study reports the synthesis of plasmonic hot nanogap networks-in-triangular nanoframes (NITNFs), featuring narrow intraparticle nanogap networks embedded within triangular nanoframes. Starting from Au nanotriangles, Pt NITNFs are synthesized through a cascade reaction involving simultaneous Pt deposition and Au etching in a one-pot process. The Pt NITNFs are then transformed into plasmonically active Au NITNFs via Au coating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!