Repressor protein Opi1 is required to negatively regulate yeast structural genes of phospholipid biosynthesis in the presence of precursor molecules inositol and choline (IC). Opi1 interacts with the paired amphipathic helix 1 (PAH1) of pleiotropic corepressor Sin3, leading to recruitment of histone deacetylases (HDACs). Mutational analysis of the Opi1-Sin3 interaction domain (OSID) revealed that hydrophobic OSID residues L56, V59 and V67 of Opi1 are indispensable for gene repression. Our results also suggested that repression is not executed entirely via Sin3. Indeed, we could show that OSID contacts a second pleiotropic corepressor, Ssn6 (=Cyc8), which together with Tup1 is also able to recruit HDACs. Interestingly, mutations sin3 and ssn6 turned out as synthetically lethal. Our analysis further revealed that OSID not only binds to PAH1 but also interacts with tetratricopeptide repeats (TPR) of Ssn6. This interaction could no longer be observed with Opi1 OSID variants. To trigger gene repression, Opi1 must also interact with activator Ino2, using its activator interaction domain (AID). AID contains a hydrophobic structural motif reminiscent of a leucine zipper. Our mutational analysis of selected positions indeed confirmed that residues L333, L340, V343, V350, L354 and V361 are necessary for repression of Opi1 target genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00438-010-0589-5 | DOI Listing |
Mol Genet Genomics
February 2011
Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487 Greifswald, Germany.
Repressor protein Opi1 is required to negatively regulate yeast structural genes of phospholipid biosynthesis in the presence of precursor molecules inositol and choline (IC). Opi1 interacts with the paired amphipathic helix 1 (PAH1) of pleiotropic corepressor Sin3, leading to recruitment of histone deacetylases (HDACs). Mutational analysis of the Opi1-Sin3 interaction domain (OSID) revealed that hydrophobic OSID residues L56, V59 and V67 of Opi1 are indispensable for gene repression.
View Article and Find Full Text PDFJ Biol Chem
July 2004
Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
Iron and copper are redox active metals essential for life. In the budding yeast Saccharomyces cerevisiae, expression of iron and copper genes involved in metal acquisition and utilization is tightly regulated at the transcriptional level. In addition iron and copper metabolism are inextricably linked because of the dependence on copper as a co-factor for iron uptake or mobilization.
View Article and Find Full Text PDFJ Biol Chem
August 2000
Department of Developmental Biology, Stanford University Medical School, CA 94305, USA.
Control of gene expression often requires that transcription terminates rapidly after destruction, inactivation, or nuclear export of transcription factors. However, the role of transcription factor inactivation in terminating transcription is unclear. We have developed a means of conducting order of addition and co-occupancy experiments in living cells by rapidly exchanging proteins bound to promoters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!