Scaffold/matrix attachment regions (S/MARs) are defined as genomic DNA sequences, located at the physical boundaries of chromatin loops. Previous reports suggest that S/MARs elements may increase and stabilize the expression of transgene. In this study, DNA sequence with MAR characteristics has been isolated from B. napus . The BnMARs sequence was used to flank the CaMV35S-GUS-NOS expression cassette within the T-DNA of the plant expression vector pPZP212. These constructs were introduced into tobacco plants, respectively and the GUS reporter gene expression was investigated in stably transformed plants. When the forward BnMARs sequence was inserted into the upstream of CaMV35S promoter, the average GUS activities were much higher than those without BnMARs in transgenic tobacco. The GUS expression of M(+)35S:GUS, M(+)35S:GUSM(+) and M(+)35S:GUSM(-) constructs increased average 1.0-fold, with or without BnMARs located downstream of NOS. The GUS expression would not be affected when reverse BnMARs sequence inserted whether upstream of CaMV35S promoter or downstream of NOS. The GUS expression was affected a little when reverse BnMARs sequence was inserted the downstream of NOS and BnMARs could not act by serving as of promoter. The results showed that the presence of forward BnMARs sequence does have an obvious impact on enhancing downstream gene expression and its effect is unidirectional.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-010-0433-3 | DOI Listing |
Mol Biol Rep
June 2011
Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Scaffold/matrix attachment regions (S/MARs) are defined as genomic DNA sequences, located at the physical boundaries of chromatin loops. Previous reports suggest that S/MARs elements may increase and stabilize the expression of transgene. In this study, DNA sequence with MAR characteristics has been isolated from B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!