A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Truncation attenuates molecular chaperoning and apoptosis inhibition by p26, a small heat shock protein from Artemia franciscana. | LitMetric

The small heat shock proteins (sHSPs), which prevent irreversible protein denaturation and inhibit apoptosis, consist of an amino-terminus, the canonical α-crystallin domain, and a carboxy-terminal extension. It remains difficult, however, to define sHSP structure-function relationships and with this in mind p26, an sHSP from the crustacean Artemia franciscana, was truncated by deletion mutagenesis. Wild-type p26 cDNA and three truncated variants inserted into the eukaryotic expression vector pcDNA3.1/HisC were used to generate stably transfected 293H cells. p26 shielded transfected cells against death upon exposure to heat and oxidative stress. Truncation reduced chaperone activity, with cells synthesizing the p26 α-crystallin domain being the least resistant. Wild-type p26 inhibited apoptosis in transfected cells, with protection against oxidation-generated apoptosis being more effective than that against heat-induced apoptosis. Truncation reduced p26 apoptotic inhibitory activity, with the α-crystallin domain again being the least effective. The results show that a crustacean sHSP functions effectively in mammalian cells, demonstrating interchangeability of these proteins between distantly related organisms and indicating similarities in their mechanisms of action. Moreover, maximal activity was observed for full-length p26, indicating that structural elements required for chaperone activity and apoptosis inhibition reside throughout the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1139/O10-143DOI Listing

Publication Analysis

Top Keywords

α-crystallin domain
12
apoptosis inhibition
8
p26
8
small heat
8
heat shock
8
artemia franciscana
8
wild-type p26
8
transfected cells
8
truncation reduced
8
chaperone activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!