Many protein kinases are key nodal signaling molecules that regulate a wide range of cellular functions. These functions may require complex spatiotemporal regulation of kinase activities. Here, we show that protein kinase A (PKA), Ca(2+) and cyclic AMP (cAMP) oscillate in sync in insulin-secreting MIN6 beta cells, forming a highly integrated oscillatory circuit. We found that PKA activity was essential for this oscillatory circuit and was capable of not only initiating the signaling oscillations but also modulating their frequency, thereby diversifying the spatiotemporal control of downstream signaling. Our findings suggest that exquisite temporal control of kinase activity, mediated via signaling circuits resulting from cross-regulation of signaling pathways, can encode diverse inputs into temporal parameters such as oscillation frequency, which in turn contribute to proper regulation of complex cellular functions in a context-dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073414PMC
http://dx.doi.org/10.1038/nchembio.478DOI Listing

Publication Analysis

Top Keywords

oscillatory circuit
12
cellular functions
8
signaling
6
signaling diversity
4
diversity pka
4
pka achieved
4
achieved ca2+-camp-pka
4
ca2+-camp-pka oscillatory
4
circuit protein
4
protein kinases
4

Similar Publications

Photochemically triggered, transient, and temporally oscillatory-modulated transcription machineries are introduced. The resulting dynamic transcription circuits are implemented to guide photochemically triggered, transient, and oscillatory modulation of thrombin toward temporal control over fibrinogenesis. One system describes the assembly of a reaction module leading to the photochemically triggered formation of an active transcription machinery that, in the presence of RNase H, guides the transient activation of thrombin toward fibrinogenesis.

View Article and Find Full Text PDF

Introduction: A fundamental property of the neocortex is its columnar organization in many species. Generally, neurons of the same column share stimulus preferences and have strong anatomical connections across layers. These features suggest that neurons within a column operate as one unified network.

View Article and Find Full Text PDF

Background: Aneurysmal subarachnoid hemorrhage (aSAH) can lead to cognitive impairment, but underlying neural mechanisms remain to be elucidated.

Materials And Methods: To predict long-term cognitive impairment after aSAH, resting electroencephalography (EEG) was measured in 112 patients hospitalized with a diagnosis of aSAH (n = 66) or unruptured intracranial aneurysms (UIA; controls) (n = 46). A neuropsychological battery was administered 8 to 24 months after discharge.

View Article and Find Full Text PDF

Gait initiation is a fundamental human task, requiring one or more anticipatory postural adjustments (APA) prior to stepping. Deviations in amplitude and timing of APAs exist in Parkinson's disease (PD), causing dysfunctional postural control which increases the risk of falls. The motor cortex and basal ganglia have been implicated in the regulation of postural control, however, their dynamics during gait initiation, relationship to APA metrics, and response to pharmacotherapy such as levodopa are unknown.

View Article and Find Full Text PDF

Affective processing is important for guiding behavior and its dysfunction can lead to several psychiatric illnesses, including depression and substance use disorders. Conditioned taste aversion (CTA) is used to study learned shifts in affect, and taste reactivity (TR) can effectively track the hedonic properties of appetitive and aversive tastants before and after CTA. While the infralimbic cortex (IL) and its projections to the nucleus accumbens (NAc) shell play a key role in learned negative affect, this role is unique to males.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!