A complete portrait of a cell requires a detailed description of its molecular topography: proteins must be linked to particular organelles. Immunocytochemical electron microscopy can reveal locations of proteins with nanometer resolution but is limited by the quality of fixation, the paucity of antibodies and the inaccessibility of antigens. Here we describe correlative fluorescence electron microscopy for the nanoscopic localization of proteins in electron micrographs. We tagged proteins with the fluorescent proteins Citrine or tdEos and expressed them in Caenorhabditis elegans, fixed the worms and embedded them in plastic. We imaged the tagged proteins from ultrathin sections using stimulated emission depletion (STED) microscopy or photoactivated localization microscopy (PALM). Fluorescence correlated with organelles imaged in electron micrographs from the same sections. We used these methods to localize histones, a mitochondrial protein and a presynaptic dense projection protein in electron micrographs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059187 | PMC |
http://dx.doi.org/10.1038/nmeth.1537 | DOI Listing |
It is now possible to generate large volumes of high-quality images of biomolecules at near-atomic resolution and in near-native states using cryogenic electron microscopy/electron tomography (Cryo-EM/ET). However, the precise annotation of structures like filaments and membranes remains a major barrier towards applying these methods in high-throughput. To address this, we present TARDIS ( ransformer-b sed apid imensionless nstance egmentation), a machine-learning framework for fast and accurate annotation of micrographs and tomograms.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
This study aimed to develop ultrasonically-assisted, alcohol-free, and noncorrosive aqueous zein/turmeric essential oil (TEO)-loaded nanoemulsions (NEs) to stimulate pullulan/carboxymethyl chitosan (P/CMCS)-based edible films for mango fruit preservation. The influence of innovative sonicated zein/TEO-based NEs (ZTNEs) as nanofillers on the physico-mechanical characteristics of the resulting P/CMCS edible films was investigated. A stable and well-dispersed ZTNE was achieved using 20 % zein with 10 min of ultrasound treatment, leading to a reduced droplet size (194.
View Article and Find Full Text PDFMol Genet Metab
December 2024
Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America.
Free sialic acid storage disorder (FSASD) is a rare autosomal recessive lysosomal storage disease caused by pathogenic SLC17A5 variants with variable disease severity. We performed a multidisciplinary evaluation of an adolescent female with suspected lysosomal storage disease and conducted comprehensive studies to uncover the molecular etiology. The proband exhibited intellectual disability, a storage disease gestalt, and mildly elevated urine free sialic acid levels.
View Article and Find Full Text PDFJ Fluoresc
December 2024
National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan.
Fluorescence spectroscopy employed to compute the antibacterial potential of pure ZnO and Titania (TiO) loaded ZnO (TiO: 2%, 4%, 6%, and 8%) electrospun nanofibers. The study of electrospun nanofibers followed by their structural, morphological and antibacterial properties has been revealed through fluorescence spectroscopy. X-ray diffraction (XRD) analysis of nanofibers calcinated at 600 °C revealed the presence of polycrystalline wurtzite hexagonal crystallographic planes of ZnO with preferred orientation along (101) direction.
View Article and Find Full Text PDFSci Rep
December 2024
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia.
One of the biggest challenges encountered by the current generation is the evolution of antibiotic resistant bacteria as a result of excessive and inappropriate use of antibiotics. This problem has led to the development of alternative approaches to treat the diseases caused by these multidrug resistant bacteria (MDR). One of the most promising and novel approaches to combat these pathogens is utilization of nanomaterials as antimicrobial agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!