MicroRNAs (miRs) are a class of single-stranded, non-coding RNAs of about 22 nucleotides in length. Increasing evidence implicates miRs in myocardial disease processes. Here we show that miR-199b is a direct calcineurin/NFAT target gene that increases in expression in mouse and human heart failure, and targets the nuclear NFAT kinase dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1a (Dyrk1a), constituting a pathogenic feed forward mechanism that affects calcineurin-responsive gene expression. Mutant mice overexpressing miR-199b, or haploinsufficient for Dyrk1a, are sensitized to calcineurin/NFAT signalling or pressure overload and show stress-induced cardiomegaly through reduced Dyrk1a expression. In vivo inhibition of miR-199b by a specific antagomir normalized Dyrk1a expression, reduced nuclear NFAT activity and caused marked inhibition and even reversal of hypertrophy and fibrosis in mouse models of heart failure. Our results reveal that microRNAs affect cardiac cellular signalling and gene expression, and implicate miR-199b as a therapeutic target in heart failure.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncb2126DOI Listing

Publication Analysis

Top Keywords

heart failure
12
targets nuclear
8
kinase dyrk1a
8
calcineurin/nfat signalling
8
nuclear nfat
8
gene expression
8
dyrk1a expression
8
dyrk1a
5
expression
5
microrna-199b targets
4

Similar Publications

Purpose Of Review: This review aims to explore the complex interplay between atrial functional mitral regurgitation (AFMR), atrial fibrillation (AF), and heart failure with preserved ejection fraction (HFpEF). The goal is to define these conditions, examine their underlying mechanisms, and discuss treatment perspectives, particularly addressing diagnostic challenges.

Recent Findings: Recent research highlights the rising prevalence of AFMR, now accounting for nearly one-third of significant mitral regurgitation cases.

View Article and Find Full Text PDF

Detecting Hemorrhagic Myocardial Infarction With 3.0-T CMR: Insights Into Spatial Manifestation, Time-Dependence, and Optimal Acquisitions.

JACC Cardiovasc Imaging

January 2025

Department of Radiology and Imaging Sciences and Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA. Electronic address:

Background: Hemorrhagic myocardial infarction (hMI) can rapidly diminish the benefits of reperfusion therapy and direct the heart toward chronic heart failure. T2∗ cardiac magnetic resonance (CMR) is the reference standard for detecting hMI. However, the lack of clarity around the earliest time point for detection, time-dependent changes in hemorrhage volume, and the optimal methods for detection can limit the development of strategies to manage hMI.

View Article and Find Full Text PDF

Background: Implementation of semaglutide weight loss therapy has been challenging due to drug supply and cost, underscoring a need to identify those who derive the greatest absolute benefit.

Objectives: Allocation of semaglutide was modeled according to coronary artery calcium (CAC) among individuals without diabetes or established atherosclerotic cardiovascular disease (CVD).

Methods: In this analysis, 3,129 participants in the MESA (Multi-Ethnic Study of Atherosclerosis) without diabetes or clinical CVD met body mass index criteria for semaglutide and underwent CAC scoring on noncontrast cardiac computed tomography.

View Article and Find Full Text PDF

Cardiovascular Outcomes With Antidiabetic Drugs in People With Type 2 Diabetes and a Prior Stroke.

Mayo Clin Proc

January 2025

Department of Internal Medicine, Korea University Anam Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea. Electronic address:

Objective: To assess the comparative effectiveness of sodium-glucose cotransporter 2 inhibitors (SGLT2i), thiazolidinediones (TZD), and dipeptidyl peptidase-4 inhibitors (DPP-4i) for the cardiorenal outcomes and mortality in individuals with type 2 diabetes and a prior stroke.

Patients And Methods: Using the Korean National Health Insurance Service database from 2014 to 2021, a new-user cohort was established through propensity score matching for SGLT2i, TZD, and DPP-4i. The primary outcomes were major adverse cardiovascular events (MACE), comprising myocardial infarction, ischemic stroke, and cardiovascular death.

View Article and Find Full Text PDF

Quantifying DNA Lesions and Circulating Free DNA: Diagnostic Marker for Electropathology and Clinical Stage of AF.

JACC Clin Electrophysiol

December 2024

Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Electronic address:

Background: Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.

Objectives: This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!