Fatty acids binding proteins (FABPs) are involved in uptake, binding, transport and metabolism of fatty acids (FAs). Although FAs are known to stimulate insulin secretion from pancreatic islets when transiently elevated, while contributing to islet loss of function, lipotoxicity and apoptosis when chronically elevated, almost nothing is known regarding the FABPs in this tissue. The present study aimed at exploring the expression pattern and regulation of FABPs in rat islets and the insulin-secreting INS-1E cells. Rat islets and INS-1E cells expressed the heart/muscle type (FABP3) and the epidermal type (FABP5) genes. Different FAs significantly enhanced the expression of both FABPs. High glucose concentration induced a similar elevation of both FABP mRNA levels, and similarly to its effect on insulin 1 mRNA. Addition of oleic or palmitic acids to glucose did not render a further effect. FABP3 gene expression increased in response to PPARα agonist, while FABP5 increased in response to PPARα and PPARγ agonists, and decreased in response to a PPARβ agonist. Beta-oxidation of FAs is required for the gene expression of both FABP genes in INS-1E cells. Inhibition of CPT-1 by etomoxir inhibited the oleic acid-induced FABP 3 and 5 gene expression, while activation of AMPK by metformin amplified the oleic-induced expression of both FABPs. FABP3 and 5 gene transcription required de novo protein synthesis, since inhibition by cycloheximide significantly decreased both FABP mRNAs. These data show a complex interrelationship between glucose and FAs in the control of FABP gene expression and that FABP3 and 5 may play a role in insulin secretion.

Download full-text PDF

Source
http://dx.doi.org/10.4161/isl.2.3.11454DOI Listing

Publication Analysis

Top Keywords

ins-1e cells
16
gene expression
16
fatty acids
12
expression
8
binding proteins
8
pancreatic islets
8
islets ins-1e
8
acids glucose
8
insulin secretion
8
rat islets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!