Understanding the mechanism for growing TiO(2) nanotubes is important for controlling the nanostructures. The hydroxide nano-islands on the Ti surface play a significant role at the initial stage of anodization by forming the very first nano-pores at the interface between hydroxide islands and substrate and eliminating the H(2)O electrolysis. A quantitative time dependent SEM study has revealed a nanotube growth process with an initial linear increase of pore diameter, film thickness and number of pores. During the anodization of titanium, different current transient curves are observed for Ti samples with or without hydroxide on the surface. The transient current profile has been quantitatively analyzed by fitting several distinctive stages based on a growth mechanism supported by SEM observations. It is found that a saturated cubic dependent equation is appropriate to fit a short current upturn due to the increase of the surface area.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/50/505601DOI Listing

Publication Analysis

Top Keywords

influence hydroxide
4
hydroxide initial
4
initial stages
4
stages anodic
4
anodic growth
4
growth tio2
4
tio2 nanotubular
4
nanotubular arrays
4
arrays understanding
4
understanding mechanism
4

Similar Publications

Biogas upgrading using aqueous bamboo-derived activated carbons.

Bioresour Technol

January 2025

Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå 97187, Sweden. Electronic address:

CO/CH separation is crucial for biogas upgrading. In this study, the bamboo-derived activated carbons (BACs) were prepared with different ratios of potassium hydroxide (KOH)/bamboo charcoal (BC), and the hybrid sorbents of aqueous BACs were developed for CO/CH separation. Both the gas solubility and sorption rate were measured, and Henry's constant and liquid-side mass-transfer coefficient as well as the CO/CH selectivity were calculated.

View Article and Find Full Text PDF

Dissolved beryllium (< 1 kDa) mobilized as a major element in groundwater in legacy mine waste.

Environ Pollut

January 2025

Applied Geochemistry, Department of Civil, Environmental and Natural Resource Engineering, Luleå University of Technology, Luleå, Sweden.

Research regarding the geochemistry of beryllium (Be) in terrestrial environments is hindered by its high toxicity to humans and the low concentrations normally occurring in the environment. Although Be is considered an immobile element, extremely high dissolved concentrations have been detected in groundwater in the legacy Tailings Storage Facility (TSF) of Smaltjärnen, Sweden. Therefore, a detailed study was conducted to determine physiochemical parameters affecting the speciation of Be in the groundwater.

View Article and Find Full Text PDF

The VCo-LDH/CS hydrogel beads were created by combining VCo-layered double hydroxide (VCo-LDH) and chitosan (CS) using a cross-linking process with epichlorohydrin. These beads were specifically designed to remove tetracycline (TTC). To characterize the VCo-LDH/CS hydrogel beads, several analytical techniques were used, with PXRD, XPS, FESEM, EDX, and FT-IR.

View Article and Find Full Text PDF

Rare earth element (REEs) imprints and provenance of wetland sediments from Oaxaca coast, Mexico.

Mar Pollut Bull

January 2025

Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de junio de 1520, Barrio la Laguna Ticomán, Delg. Gustavo A Madero, C.P. 07340, Ciudad de México, Mexico.

REEs in wetland sediments from the Oaxaca coast in southern Mexico were used to infer the sources and depositional processes by involving both the geochemical characteristics and geostatistical approaches. Statistically strong positive correlation between REEs confirmed similar origin in all the cores. Light REEs (LREEs) represented >84 % of ΣREE mean concentrations varies between 47.

View Article and Find Full Text PDF

Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting.

J Colloid Interface Sci

January 2025

Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:

The design of low-cost, highly active, and stable electrocatalysts is pivotal for advancing water electrolysis technologies. In this study, carbonyl iron powder (CIP) was anchored within the pores of nickel foam (NF) by electroplating nickel, creating nickel iron foam-like (NFF-L) substrates. Subsequently, nickel-iron hydroxide (NiFe-OH) was synthesized on the NFF-L substrate employing an autogenous growth strategy, followed by a phosphating treatment that produced a nanoflower-like NiFe bimetallic phosphide heterostructure catalyst (FeP-NiP@NFF-L).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!