There has been considerable interest in virulence genes in the plasticity region of Helicobacter pylori, but little is known about many of these genes. JHP940, one of the virulence factors encoded by the plasticity region of H. pylori strain J99, is a proinflammatory protein that induces tumor necrosis factor-alpha and interleukin-8 secretion as well as enhanced translocation of NF-κB in cultured macrophages. Here we have characterized the structure and function of JHP940 to provide the framework for better understanding its role in inflammation by H. pylori. Our work demonstrates that JHP940 is the first example of a eukaryotic-type Ser/Thr kinase from H. pylori. We show that JHP940 is catalytically active as a protein kinase and translocates into cultured human cells. Furthermore, the kinase activity is indispensable for indirectly up-regulating phosphorylation of NF-κB p65 at Ser276. Our results, taken together, contribute significantly to understanding the molecular basis of the role of JHP940 in inflammation and subsequent pathogenesis caused by H. pylori. We propose to rename the jhp940 gene as ctkA (cell translocating kinase A).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003084PMC
http://dx.doi.org/10.1073/pnas.1010153107DOI Listing

Publication Analysis

Top Keywords

helicobacter pylori
8
proinflammatory protein
8
ser/thr kinase
8
plasticity region
8
jhp940
6
kinase
5
pylori
5
pylori proinflammatory
4
protein up-regulates
4
up-regulates nf-kappab
4

Similar Publications

Mechanisms of Keap1/Nrf2 modulation in bacterial infections: implications in persistence and clearance.

Front Immunol

January 2025

Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.

Pathogenic bacteria trigger complex molecular interactions in hosts that are characterized mainly by an increase in reactive oxygen species (ROS) as well as an inflammation-associated response. To counteract oxidative damage, cells respond through protective mechanisms to promote resistance and avoid tissue damage and infection; among these cellular mechanisms the activation or inhibition of the nuclear factor E2-related factor 2 (Nrf2) is frequently observed. The transcription factor Nrf2 is considered the regulator of several hundred cytoprotective and antioxidant genes.

View Article and Find Full Text PDF

Helicobacter pylori infection promotes M1 macrophage polarization and gastric inflammation by activation of NLRP3 inflammasome via TNF/TNFR1 axis.

Cell Commun Signal

January 2025

Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Background: Macrophages play a crucial role in chronic gastritis induced by the pathogenic Helicobacter pylori (H. pylori) infection. NLRP3 inflammasome has emerged as an important component of inflammatory processes.

View Article and Find Full Text PDF

Background: Children are among the most vulnerable groups for Helicobacter pylori (H. pylori) infection, which was linked with an increased risk of anemia. H.

View Article and Find Full Text PDF

Objective: Gastric adenocarcinoma (GAC) is the 17th most common cancer in the UK with a 5-year survival rate of 22%. GastroPanel (Biohit Oyj; Helsinki, Finland) is an ELISA kit that measures pepsinogen I (PGI); pepsinogen II (PGII); gastrin-17 (G-17); and Helicobacter pylori IgG antibodies (Hp IgG). PGI and the PGI/PGII ratio correlate inversely with the severity of chronic atrophic gastritis (AG).

View Article and Find Full Text PDF

Objective: Gastrointestinal stromal tumor (GIST) is the most common type of mesenchymal tumor accounting for 2.2% of all malignant gastric tumors. Mesenchymal stem cells (MSCs) play crucial roles in gastric carcinogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!