Type I interferons (IFNs) are central regulators of the innate and adaptive immune responses to viral and bacterial infections. Type I IFNs are induced upon cytosolic detection of microbial nucleic acids, including DNA, RNA, and the bacterial second messenger cyclic-di-GMP (c-di-GMP). In addition, a recent study demonstrated that the intracellular bacterial pathogen Listeria monocytogenes stimulates a type I IFN response due to cytosolic detection of bacterially secreted c-di-AMP. The transmembrane signaling adaptor Sting (Tmem173, Mita, Mpys, Eris) has recently been implicated in the induction of type I IFNs in response to cytosolic DNA and/or RNA. However, the role of Sting in response to purified cyclic dinucleotides or during in vivo L. monocytogenes infection has not been addressed. In order to identify genes important in the innate immune response, we have been conducting a forward genetic mutagenesis screen in C57BL/6 mice using the mutagen N-ethyl-N-nitrosourea (ENU). Here we describe a novel mutant mouse strain, Goldenticket (Gt), that fails to produce type I IFNs upon L. monocytogenes infection. By genetic mapping and complementation experiments, we found that Gt mice harbor a single nucleotide variant (T596A) of Sting that functions as a null allele and fails to produce detectable protein. Analysis of macrophages isolated from Gt mice revealed that Sting is absolutely required for the type I interferon response to both c-di-GMP and c-di-AMP. Additionally, Sting is required for the response to c-di-GMP and L. monocytogenes in vivo. Our results provide new functions for Sting in the innate interferon response to pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3028833 | PMC |
http://dx.doi.org/10.1128/IAI.00999-10 | DOI Listing |
Commun Biol
January 2025
Department of Medicine, Universite de Montreal, Montreal, QC, Canada.
Severe COVID-19 can trigger a cytokine storm, leading to acute respiratory distress syndrome (ARDS) with similarities to superantigen-induced toxic shock syndrome. An outstanding question is whether SARS-CoV-2 protein sequences can directly induce inflammatory responses. In this study, we identify a region in the SARS-CoV-2 S2 spike protein with sequence homology to bacterial super-antigens (termed P3).
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
Background: Immune checkpoint inhibitors targeting programmed cell death protein-1 (PD-1) are the first line of treatment for many solid tumors including melanoma. PD-1 blockade enhances the effector functions of melanoma-infiltrating CD8 T cells, leading to durable tumor remissions. However, 55% of patients with melanoma do not respond to treatment.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, China.
Background: Lymphocytic choriomeningitis virus (LCMV) is a zoonotic pathogen primarily transmitted by rodents. Recently, LCMV has been detected in ticks from northeastern China; however, the pathogenicity of this virus in murine models remains to be elucidated.
Results: Here, we examined the tick-derived LCMV strain JX14 by inoculating BALB/c mice with 3.
Environ Pollut
January 2025
SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China. Electronic address:
The biological pathways connecting ambient fine particulate matter (PM)-induced initial adverse effects to the development of atherosclerotic cardiovascular diseases are not fully understood. We hypothesize that lysoglycerophospholipids (LysoGPLs) are pivotal mediators of atherosclerosis induced by exposure to PM. This study investigated the changes of LysoGPLs in response to PM exposure and the mediation role of LysoGPLs in the pro-atherosclerotic effects of PM exposure.
View Article and Find Full Text PDFPLoS Pathog
January 2025
National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
Interferon regulatory factor 3 (IRF3) is a central hub transcription factor that controls host antiviral innate immunity. The expression and function of IRF3 are tightly regulated by the post-translational modifications. However, it is unknown whether unanchored ubiquitination and deubiquitination of IRF3 involve modulating antiviral innate immunity against RNA viruses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!