Carnitine deficiency in surgical neonates receiving total parenteral nutrition.

J Pediatr Surg

Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical School, Rotterdam, The Netherlands.

Published: April 1990

Carnitine plays a key role in the oxidation of fatty acids. Most solutions for parenteral nutrition do not contain carnitine. Because endogenous carnitine synthesis is insufficient in newborns, they are prone to developing a carnitine deficiency when they are dependent on total parenteral nutrition (TPN). Stimulated by the clinical observation of manifest clinical symptoms of carnitine deficiency in one patient, a study of 13 consecutive neonates who received TPN for over 2 weeks was begun. Their plasma carnitine levels before and during carnitine supplementation were determined. All patients had a carnitine intake far below the recommended minimal need of 11 mumol/kg per day. Although only three of them clearly showed clinical symptoms described as carnitine deficiency, carnitine supplementation for all neonates receiving TPN for over 2 weeks is recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0022-3468(90)90384-lDOI Listing

Publication Analysis

Top Keywords

carnitine deficiency
16
parenteral nutrition
12
carnitine
11
neonates receiving
8
total parenteral
8
nutrition carnitine
8
clinical symptoms
8
tpn weeks
8
carnitine supplementation
8
deficiency surgical
4

Similar Publications

Introduction: Cadmium (Cd) and polystyrene microplastics (PS-MPs), two ubiquitous environmental contaminants, produce unique synergistic toxicity when co-existing. Key unanswered questions include specific effects on liver function and potential mechanisms.

Methods: In this study, C57BL/6 mice and AML12 cells were used to establish and models to elucidate the effects of combined exposure to PS-MPs and Cd on the liver and their mechanisms.

View Article and Find Full Text PDF

Context: When clinically stable, patients with A-β+ Ketosis-Prone Diabetes (KPD) manifest unique markers of amino acid metabolism. Biomarkers differentiating KPD from type 1 (T1D) and type 2 diabetes (T2D) during hyperglycemic crises would accelerate diagnosis and management.

Objective: Compare serum metabolomics of KPD, T1D and T2D patients during hyperglycemic crises, and utilize Classification and Regression Tree (CART) modeling to distinguish these forms of diabetes.

View Article and Find Full Text PDF

Objectives: To investigate the regulatory role of nucleotide-bound oligomerized domain-like receptor containing pyrin-domain protein 6 (NLRP6) in liver lipid metabolism and non-alcoholic fatty liver disease (NAFLD).

Methods: Mouse models with high-fat diet (HFD) feeding for 16 weeks (=6) or with methionine choline-deficient diet (MCD) feeding for 8 weeks (=6) were examined for the development of NAFLD using HE and oil red O staining, and hepatic expressions of NLRP6 were detected with RT-qPCR, Western blotting, and immunohistochemical staining. Cultured human hepatocytes (LO2 cells) with adenovirus-mediated NLRP6 overexpression or knock-down were treated with palmitic acid (PA) in the presence or absence of compound C (an AMPK inhibitor), and the changes in cellular lipid metabolism were examined by measuring triglyceride, ATP and β-hydroxybutyrate levels and using oil red staining, RT-qPCR, and Western blotting.

View Article and Find Full Text PDF

Structural and Dynamic Assessment of Disease-Causing Mutations for the Carnitine Transporter OCTN2.

Mol Inform

January 2025

Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Muenster, Germany.

Primary carnitine deficiency (PCD) is a rare autosomal recessive genetic disorder caused by missense mutations in the SLC22A5 gene encoding the organic carnitine transporter novel type 2 (OCTN2). This study investigates the structural consequences of PCD-causing mutations, focusing on the N32S variant. Using an alpha-fold model, molecular dynamics simulations reveal altered interactions and dynamics suggesting potential mechanistic changes in carnitine transport.

View Article and Find Full Text PDF

Enhancing newborn screening sensitivity and specificity for missed NICCD using selected amino acids and acylcarnitines.

Orphanet J Rare Dis

January 2025

Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.

Purpose: To enhance the detection rate of Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) through newborn screening (NBS), we analyzed the metabolic profiles of missed patients and proposed a more reliable method for early diagnosis.

Methods: In this retrospective study, NICCD patients were classified into "Newborn Screening" (64 individuals) and "Missed Screening" (52 individuals) groups. Metabolic profiles were analyzed using the non-derivatized MS/MS Kit, and genetic mutations were identified via next-generation sequencing and confirmed by Sanger sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!