Hph1 and Hph2 are homologous integral endoplasmic reticulum (ER) membrane proteins required for Saccharomyces cerevisiae survival under environmental stress conditions. To investigate the molecular functions of Hph1 and Hph2, we carried out a split-ubiquitin-membrane-based yeast two-hybrid screen and identified their interactions with Sec71, a subunit of the Sec63/Sec62 complex, which mediates posttranslational translocation of proteins into the ER. Hph1 and Hph2 likely function in posttranslational translocation, as they interact with other Sec63/Sec62 complex subunits, i.e., Sec72, Sec62, and Sec63. hph1Δ hph2Δ cells display reduced vacuole acidification; increased instability of Vph1, a subunit of vacuolar proton ATPase (V-ATPase); and growth defects similar to those of mutants lacking V-ATPase activity. sec71Δ cells exhibit similar phenotypes, indicating that Hph1/Hph2 and the Sec63/Sec62 complex function during V-ATPase biogenesis. Hph1/Hph2 and the Sec63/Sec62 complex may act together in this process, as vacuolar acidification and Vph1 stability are compromised to the same extent in hph1Δ hph2Δ and hph1Δ hph2Δ sec71Δ cells. In contrast, loss of Pkr1, an ER protein that promotes posttranslocation assembly of Vph1 with V-ATPase subunits, further exacerbates hph1Δ hph2Δ phenotypes, suggesting that Hph1 and Hph2 function independently of Pkr1-mediated V-ATPase assembly. We propose that Hph1 and Hph2 aid Sec63/Sec62-mediated translocation of specific proteins, including factors that promote efficient biogenesis of V-ATPase, to support yeast cell survival during environmental stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019806 | PMC |
http://dx.doi.org/10.1128/EC.00241-10 | DOI Listing |
Bone
February 2021
Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
Epigenetic regulatory proteins support mammalian development, cancer, aging and tissue repair by controlling many cellular processes including stem cell self-renewal, lineage-commitment and senescence in both skeletal and non-skeletal tissues. We review here our knowledge of epigenetic regulatory protein complexes that support the formation of inaccessible heterochromatin and suppress expression of cell and tissue-type specific biomarkers during development. Maintenance and formation of heterochromatin critically depends on epigenetic regulators that recognize histone 3 lysine trimethylation at residues K9 and K27 (respectively, H3K9me3 and H3K27me3), which represent transcriptionally suppressive epigenetic marks.
View Article and Find Full Text PDFFuture Med Chem
August 2016
Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jingshi Road, Jinan, 250014, China.
ISRN Neurosci
July 2014
Department of Neurodegeneration, Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
The hypoxia inducible factor 1 (HIF-1) is a central transcription factor involved in the cellular and molecular adaptation to hypoxia and low glucose supply. The level of HIF-1 is to a large degree regulated by the HIF prolyl hydroxylase enzymes (HPHs) belonging to the Fe(II) and 2-oxoglutarate-dependent dioxygenase superfamily. In the present study, we compared competitive and noncompetitive HPH-inhibitor compounds in two different cell types (SH-SY5Y and PC12).
View Article and Find Full Text PDFPharmacol Res
September 2011
Dept. of Neurodegeneration, H. Lundbeck A/S, Valby, Denmark.
The stability and transcriptional activity of the hypoxia-inducible factors (HIFs) are regulated by oxygen-dependent hydroxylation that is catalyzed by three HIF prolyl 4-hydroxylases (HPHs). Use of HPH inhibition as a mean for HIF-upregulation has recently gained interest as a potential treatment paradigm against neurodegenerative diseases like ischemia and Parkinson's disease. In the present investigation we report the development of a new and robust assay to measure HPH activity.
View Article and Find Full Text PDFGenetics
March 2011
Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
The function of the vacuolar H(+)-ATPase (V-ATPase) enzyme complex is to acidify organelles; this process is critical for a variety of cellular processes and has implications in human disease. There are five accessory proteins that assist in assembly of the membrane portion of the complex, the V(0) domain. To identify additional elements that affect V-ATPase assembly, trafficking, or enzyme activity, we performed a genome-wide enhancer screen in the budding yeast Saccharomyces cerevisiae with two mutant assembly factor alleles, VMA21 with a dysfunctional ER retrieval motif (vma21QQ) and vma21QQ in combination with voa1Δ, a nonessential assembly factor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!