Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Group 2 allergen of Dermatophagoides pteronyssinus 2 (Der p2) induces airway inflammation without protease activity, and elevated nerve growth factor (NGF) levels are also found in this inflammation. How the allergen Der p2 regulates NGF release via reactive oxygen species (ROS) to induce inflammation remains unclear. In the present study, intratracheal administration of Der p2 to mice led to inflammatory cell infiltration, mucus gland hyperplasia, and NGF upregulation in the bronchial epithelium, as well as elevated ROS and NGF production in bronchoalveolar lavage fluids. In addition, Der p2 caused fibrocyte accumulation and mild fibrosis. p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) inhibitors inhibited Der p2-induced NGF release in LA4 lung epithelial cells and MLg lung fibroblasts. Pretreatment with an antioxidant, tiron, reduced the Der p2-induced ROS production, NGF expression and release, p38 MAPK or JNK phosphorylation, and airway inflammation. These results suggest that Der p2 allergen-induced airway inflammation and elevated NGF release were through increasing ROS production and a MAPK-dependent pathway. The use of an antioxidant, tiron, may provide a new therapeutic modality for the treatment of allergic asthma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00165.2010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!