A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Validation through accuracy prediction in neuroimage registration. | LitMetric

Validation and accuracy assessment are the main bottlenecks preventing the adoption of many medical image processing algorithms in the clinical practice. In the classical approach, a-posteriori analysis is performed based on some predefined objective metrics. The main limitation of this methodology is in the fact that it does not provide a mean to estimate what the performance would be a-priori, and thus to shape the processing workflow in the most suitable way. In this paper, we propose a different approach based on Petri Nets. The basic idea consists in predicting the accuracy that will result from a given processing on a given type of data based on the identification and characterization of the sources of inaccuracy intervening along the whole chain. Here we propose a proof of concept in the specific case of image registration. A Petri Net is constructed after the detection of the possible sources of inaccuracy and the evaluation of their respective impact on the estimation of the deformation field. A training set of five different synthetic volumes is used. Afterward, validation is performed on a different set of five synthetic volumes by comparing the estimated inaccuracy with the posterior measurements according to a set of predefined metrics. Two real cases are also considered. Results show that the proposed model provides a good prediction performance. An extended set of clinical data will allow the complete characterization of the system for the considered task.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2010.5628082DOI Listing

Publication Analysis

Top Keywords

validation accuracy
8
sources inaccuracy
8
set synthetic
8
synthetic volumes
8
accuracy prediction
4
prediction neuroimage
4
neuroimage registration
4
registration validation
4
accuracy assessment
4
assessment main
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!