This paper demonstrates initial results with a novel instrument for nanoparticle detection and quantization, called the "qNano." The qNano instrument provides a label-free method for detection of charged particles passing through a nanopore (a nanopore scale channel that separates two volumes) via electrophoresis. The instrument incorporates an elastomeric membrane in which a nano-scale pore has been produced by mechanical puncturing, and stretching of the membrane allows control of the nanopore size. Trans-membrane voltage drives electrophoresis and particle translocations through the nanopore, as measured by the ionic current that flows through the pore. Pressure control is also available to increase the rates of capture and translocation. We demonstrate quantization of liposome and polystyrene particles ranging from 200-400 nm. Capture rate (translocation events per second) is shown to be linear with respect to applied pressure and membrane stretching distance. Additionally, translocation event amplitude is shown to decrease with increasing pressure, but remains invariant to changes in the membrane stretching distance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2010.5627861 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!