Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Movement direction for Brain Machine Interface (BMI) can be decoded successfully using Local Field Potentials (LFP) and Single Unit Activity (SUA). A major challenge when dealing with the intra-cortical recordings is to develop decoders that are robust in time. In this paper we present for the first time a technique that uses the qualitative information derived from multiple LFP channels rather than the absolute power of the recorded signals. In this novel method, we use a power based inter-channel ranking system to define the quality of a channel in multi-channel LFP. This representation enables us to bypass the problems associated with the dynamic ranges of absolute power. We also introduce a parameter based ranking system that provides the same rank to channels that have comparable powers. We show that using our algorithms, we can develop models that provide stable decoding of eight movement directions with an average efficiency of above 56% over a period of two weeks. Moreover, the decoding power using this method is 46% at the end of two weeks versus the 13% using the traditional approaches. We also applied these models to decoding movements performed in a force field and again achieved significantly higher decoding power than the existing methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2010.5627909 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!