A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EEG compression using JPEG2000: how much loss is too much? | LitMetric

EEG compression using JPEG2000: how much loss is too much?

Annu Int Conf IEEE Eng Med Biol Soc

College of Engineering and Informatics, National University of Ireland Galway, University Road, Ireland.

Published: March 2011

Compression of biosignals is an important means of conserving power in wireless body area networks and ambulatory monitoring systems. In contrast to lossless compression techniques, lossy compression algorithms can achieve higher compression ratios and hence, higher power savings, at the expense of some degradation of the reconstructed signal. In this paper, a variant of the lossy JPEG2000 algorithm is applied to Electroencephalogram (EEG) data from the Freiburg epilepsy database. By varying compression parameters, a range of reconstructions of varying signal fidelity is produced. Although lossy compression has been applied to EEG data in previous studies, it is unclear what level of signal degradation, if any, would be acceptable to a clinician before diagnostically significant information is lost. In this paper, the reconstructed EEG signals are applied to REACT, a state-of-the-art seizure detection algorithm, in order to determine the effect of lossy compression on its seizure detection ability. By using REACT in place of a clinician, many hundreds of hours of reconstructed EEG data are efficiently analysed, thereby allowing an analysis of the amount of EEG signal distortion that can be tolerated. The corresponding compression ratios that can be achieved are also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2010.5628020DOI Listing

Publication Analysis

Top Keywords

lossy compression
12
eeg data
12
compression
8
compression ratios
8
reconstructed eeg
8
seizure detection
8
eeg
6
eeg compression
4
compression jpeg2000
4
jpeg2000 loss
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!