This paper gives performance evaluation of wearable wireless body area networks (WBANs) during walking motion. In order to evaluate the performance, received signal strength (RSS), packet error rate (PER), and bit error rate (BER) are measured in an anechoic chamber and an office room. This measurement is conducted in the frequency band of 444.5 and 2450 MHz by using GFSK signal with symbol rate of 1 MHz. The results show that in the anechoic chamber the WBAN using the 444.5 MHz enables to provide error-free communication, on the other hand, the WBAN operated in the 2450 MHz faces packet errors. Measurement results in the office room give comparable performance between these frequencies. From these observations, the use of 2450 MHz for wearable WBANs needs reflection waves in order to compensate a shadowing effect caused by the human body using the WBAN.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2010.5627951DOI Listing

Publication Analysis

Top Keywords

2450 mhz
16
performance evaluation
8
evaluation wearable
8
wearable wireless
8
wireless body
8
body area
8
area networks
8
4445 mhz
8
error rate
8
anechoic chamber
8

Similar Publications

Anaerobic digestion (AD) has very limited effectiveness against the removal of many emerging contaminants, including the pervasive antimicrobial triclocarban (TCC). This is the first study to compare two thermal pretreatment methods to evaluate the fate of persistent TCC and its transformation/degradation by-products during advanced AD. Two electromagnetic heating methods are employed: one uses an innovative radio frequency (RF) heating system at 13.

View Article and Find Full Text PDF

Microwave ablation is a therapeutic technique that kills tumors by inducing heat generation in biological tissue through microwave emissions. Microwave ablation is a minimally invasive treatment technique, which has the advantage of treating deeply located tumors with less bleeding than traditional surgical techniques. In this study, the therapeutic effect of microwave ablation was analyzed from the perspective of the temperature range where apoptosis and necrosis occur.

View Article and Find Full Text PDF

Background: Oxidative stress is thought to be related to many diseases. Furthermore, it is hypothesized that radiofrequency electromagnetic fields (RF-EMF) may induce excessive oxidative stress in various cell types and thereby have the potential to compromise human and animal health. The objective of this systematic review (SR) is to summarize and evaluate the literature on the relation between the exposure to RF-EMF in the frequency range from 100 kHz to 300 GHz and biomarkers of oxidative stress.

View Article and Find Full Text PDF

Domestic microwave ovens offer rapid cooking but face challenges such as non-uniform temperature distribution and hot spots. A novel solid-state heating system, which precisely controls microwave frequency and power, provides a promising alternative to traditional microwave ovens utilizing magnetron systems. This study compared the effects of solid-state microwave cooking on the quality of broccoli, red peppers, and carrots with those of traditional microwave and conventional cooking.

View Article and Find Full Text PDF

Guidelines for power and time variables for microwave ablation in porcine lung in vitro.

J Cancer Res Ther

August 2024

Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong Province, China No. 16766, Jingshi Road, Jinan, Shandong Province, China.

Purpose: Determination of the appropriate ablative parameters is the key to the success and safety of microwave ablation (MWA) of lung tumors. The purpose of this study was to provide guidelines and recommendations for the optimal time and power for lung tumor MWA.

Material And Methods: MWA using a 2450-MHz system was evaluated in a porcine lung.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!