In this study, we target to automatically detect behavioral patterns of patients with autism. Many stereotypical behavioral patterns may hinder their learning ability as a child and patterns such as self-injurious behaviors (SIB) can lead to critical damages or wounds as they tend to repeatedly harm one single location. Our custom designed accelerometer based wearable sensor can be placed at various locations of the body to detect stereotypical self-stimulatory behaviors (stereotypy) and self-injurious behaviors of patients with Autism Spectrum Disorder (ASD). A microphone was used to record sounds so that we may understand the surrounding environment and video provided ground truth for analysis. The analysis was done on four children diagnosed with ASD who showed repeated self-stimulatory behaviors that involve part of the body such as flapping arms, body rocking and self-injurious behaviors such as punching their face, or hitting their legs. The goal of this study is to devise novel algorithms to detect these events and open possibility for design of intervention methods. In this paper, we have shown time domain pattern matching with linear predictive coding (LPC) of data to design detection and classification of these ASD behavioral events. We observe clusters of pole locations from LPC roots to select candidates and apply pattern matching for classification. We also show novel event detection using online dictionary update method. We show that our proposed method achieves recall rate of 95.5% for SIB, 93.5% for flapping, and 95.5% for rocking which is an increase of approximately 5% compared to flapping events detected by using wrist worn sensors in our previous study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2010.5627850 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!