This work discusses the use of breathing patterns present in time sequences of MR images in the temporal registration of coronal and sagittal images. The registration is done without the use of any triggering information and any special gas to enhance the contrast. The temporal sequences of images are acquired in free breathing. As coronal and sagittal sequences of images are orthogonal to each other, their intersection corresponds to a segment in the three dimensional space. The registration happens by analyzing this intersection segment that is determined by a coronal-sagittal mapping. A time sequence of this intersection segment can be stacked, defining a two dimension spatio-temporal (2DST) image. It is assumed that the diaphragmatic movement is the principal movement and all the lungs structures do move almost synchronously. The synchronization was realized through a pattern named respiratory function. A Hough transform algorithm, using the respiratory function as input, searches for synchronized movements with the respiratory function. Finally, the composition of coronal and sagittal images that are in the same breathing phase is made by comparison of diaphragmatic respiratory patterns. Several results and conclusions are shown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2010.5627558 | DOI Listing |
Neurosurg Rev
January 2025
Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
The combination of congenital C1 occipitalization and C2-3 non-segmentation (i.e. "sandwich fusion") results in early development of atlantoaxial dislocation (AAD).
View Article and Find Full Text PDFSurg Neurol Int
December 2024
Department of Ophthalmology, Dr. Soetomo General and Academic Hospital, Surabaya, East Java, Indonesia.
Background: Craniosynostosis may result in malformations of the orbit, which can be observed in clinical presentations. Craniosynostosis impairs the normal growth of the skull, which typically occurs perpendicular to the fused suture. Craniosynostosis is classified into non-syndromic and syndromic, with an incidence of 1: 2000-2500 live births.
View Article and Find Full Text PDFArthrosc Sports Med Rehabil
December 2024
Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, Minnesota, U.S.A.
Purpose: To determine the relationship between cam morphology of the hip and ipsilateral sacroiliac motion compared to the native hip in a cadaveric model.
Methods: A simulated cam state was created using a 3-dimensional printed cam secured to the head-neck junction of 5 cadaveric hips. Hips were studied using a computed tomography-based optic metrology system and a 6 degree-of-freedom robot to exert an internal rotation torque at 3 different torque levels (6 N-m, 12 N-m, 18 N-m).
Diagnostics (Basel)
December 2024
Department of Bio Health Convergency Open Sharing System, Dan-Kook University, Cheonan 31116, Republic of Korea.
This study aims to investigate the three-dimensional morphological differences of the sphenoid sinus according to sex in the Korean adult population and conduct an exploratory study based on the findings. The sphenoid sinus, located deep within the skull, plays a crucial role in forensic identification due to its relative protection from external damage and its unique anatomical characteristics. Using cone-beam computed tomography (CBCT) data from 120 patients (60 males and 60 females) aged 20-29, the sphenoid sinus was visualized and measured in three dimensions using Mimics software (version 22.
View Article and Find Full Text PDFBankart lesions, or anterior-inferior glenoid labral tears, are diagnostically challenging on standard MRIs due to their subtle imaging features-often necessitating invasive MRI arthrograms (MRAs). This study develops deep learning (DL) models to detect Bankart lesions on both standard MRIs and MRAs, aiming to improve diagnostic accuracy and reduce reliance on MRAs. We curated a dataset of 586 shoulder MRIs (335 standard, 251 MRAs) from 558 patients who underwent arthroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!