This paper presents our experience with developing a portable wireless medical sensor device. We use National Instruments (NI) devices and LabView for measurements studying fatigue of patients suffering multiple sclerosis (MS). Fatigue is a very frequent symptom perceived by MS patients, but the disease mechanism is poorly understood. Many efforts have been made to increase the understanding of this complex phenomenon. It has been found that fatigue might be associated with abnormalities in various anatomical brain areas. Also some secondary factors, not directly related to the disease, such as depression, sleep disorder, severe pain, use of medication and psychological factors might be of importance. However, the relationship with physiological parameters and motion activities in MS patients with fatigue across time are still unknown. Therefore, we hypothesize that we could provide a new assessment of fatigue in MS besides the questionnaires that are currently employed. Furthermore we can discover more secondary factors contributing to fatigue by measuring and monitoring a battery of physiological parameters over an extended time span (e.g. 48 hours) in MS patients without disturbing their normal life behavior. We have developed wireless medical sensor devices and conducted the following, namely Electrocardiograph, body skin temperature, eye movement detection, Electromyograph, motion detection, and muscle strength. In this paper, we describe the technology and design procedures of each measurement and present data from the first two test patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2010.5627530 | DOI Listing |
Nat Commun
January 2025
Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison Street, Suite 201, Chicago, IL 60612, USA.
Background/objectives: Gait retraining is widely used in orthopedic rehabilitation to address abnormal movement patterns. However, retaining walking modifications can be challenging without guidance from physical therapists. Real-time auditory biofeedback can help patients learn and maintain gait alterations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 70800, Ostrava, Czech Republic.
During 2020-2021, the COVID-19 pandemic exposed significant vulnerabilities in hospital safety, with oxygen-related fires and explosions occurring at twice the usual rate. This highlighted insufficient preparedness for increased oxygen therapy demands and the associated risks of oxygen-enriched atmospheres. This study aimed to develop and test a smart monitoring system to detect increased oxygen concentrations in hospital environments, mitigating the risk of fires.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.
View Article and Find Full Text PDFThere remains a scarcity of studies to evaluate the treatment effect of electroconvulsive therapy (ECT). Functional near-infrared spectroscopy (fNIRS) offers a cost-effective method to measure cerebral hemodynamics. This study used fNIRS to evaluate the effect of ECT in patients suffering from schizophrenia or bipolar disorder (manic phase).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!