Is a single cell sensor possible?

Annu Int Conf IEEE Eng Med Biol Soc

Microelectronics design group, Newcastle University, UK.

Published: March 2011

A cell-based implant is a miniaturized sensor that can be placed inside a biological living cell. This device would be able to interrogate and possibly affect biological functions in vivo. This paper explores the requirements of such a system; it also investigates the changes that need to be brought about in both fabrication technologies and design methodologies to make this visionary application a reality.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2010.5627547DOI Listing

Publication Analysis

Top Keywords

single cell
4
cell sensor
4
sensor possible?
4
possible? cell-based
4
cell-based implant
4
implant miniaturized
4
miniaturized sensor
4
sensor inside
4
inside biological
4
biological living
4

Similar Publications

Antimicrobial surfaces are a promising approach to reduce the spread of pathogenic microorganisms in various critical environments. To achieve high antimicrobial functionality, it is essential to consider the material-specific bactericidal mode of action in conjunction with bacterial surface interactions. This study investigates the effect of altered contact conditions on the antimicrobial efficiency of Cu surfaces against Escherichia coli and Staphylococcus aureus.

View Article and Find Full Text PDF

T-cell receptor (TCR) therapies are a promising modality for the treatment of cancers, with significant efforts being directed towards acute myeloid leukaemia (AML), a particularly challenging disease. Chimeric antigen receptor (CAR) T-cells targeting single surface antigens have shown remarkable efficacy for B-cell lymphoblastic leukaemia, lymphomas and multiple myeloma. However, AML presents formidable obstacles to the effectiveness of CAR T-cells due to the widespread expression of heterogenous leukaemia immunophenotypes and surface antigen targets additionally present on normal myeloid cells.

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells.

View Article and Find Full Text PDF

Single-cell analysis reveals ESX-1-mediated accumulation of permissive macrophages in infected mouse lungs.

Sci Adv

January 2025

Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA.

(MTB) ESX-1, a type VII secretion system, is a key virulence determinant contributing to MTB's survival within lung mononuclear phagocytes (MNPs), but its effect on MNP recruitment and differentiation remains unknown. Here, using multiple single-cell RNA sequencing techniques, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden.

View Article and Find Full Text PDF

Background: Incomplete adherence to daily tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) reduces effectiveness. Adherence biomeasures (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!