Automatic classification of penicillin-induced epileptic EEG spikes.

Annu Int Conf IEEE Eng Med Biol Soc

Department of Electrical and Information Engineering, BOX 4500, FIN-90014 University of Oulu, Finland.

Published: March 2011

Penicillin-induced focal epilepsy is a well-known model in epilepsy research. In this model, epileptic activity is generated by delivering penicillin focally to the cortex. The drug induces interictal electroencephalographic (EEG) spikes which evolve in time and may later change to ictal discharges. This paper proposes a method for automatic classification of these interictal epileptic spikes using iterative K-means clustering. The method is shown to be able to detect different spike waveforms and describe their characteristic occurrence in time during penicillin-induced focal epilepsy. The study offers potential for future research by providing a method to objectively and quantitatively analyze the time sequence of interictal epileptic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2010.5627154DOI Listing

Publication Analysis

Top Keywords

automatic classification
8
eeg spikes
8
penicillin-induced focal
8
focal epilepsy
8
epileptic activity
8
interictal epileptic
8
classification penicillin-induced
4
epileptic
4
penicillin-induced epileptic
4
epileptic eeg
4

Similar Publications

Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.

View Article and Find Full Text PDF

Groundwater resources constitute one of the primary sources of freshwater in semi-arid and arid climates. Monitoring the groundwater quality is an essential component of environmental management. In this study, a comprehensive comparison was conducted to analyze the performance of nine ensembles and regular machine learning (ML) methods in predicting two water quality parameters including total dissolved solids (TDS) and pH, in an area with semi-arid climate conditions.

View Article and Find Full Text PDF

Eye disease detection has achieved significant advancements thanks to artificial intelligence (AI) techniques. However, the construction of high-accuracy predictive models still faces challenges, and one reason is the deficiency of the optimizer. This paper presents an efficient optimizer named Success History Adaptive Competitive Swarm Optimizer with Linear Population Reduction (L-SHACSO).

View Article and Find Full Text PDF

Objective Ultrasound is the predominant modality in medical practice for evaluating thyroid nodules. Currently, diagnosis is typically based on textural information. This study aims to develop an automated texture classification approach to aid physicians in interpreting ultrasound images of thyroid nodules.

View Article and Find Full Text PDF

Purpose: Thyroid nodules are common, and ultrasound-based risk stratification using ACR's TIRADS classification is a key step in predicting nodule pathology. Determining thyroid nodule contours is necessary for the calculation of TIRADS scores and can also be used in the development of machine learning nodule diagnosis systems. This paper presents the development, validation, and multi-institutional independent testing of a machine learning system for the automatic segmentation of thyroid nodules on ultrasound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!