Effect of the chain of magnetosomes embedded in magnetotactic bacteria and their motility on magnetic resonance imaging.

Annu Int Conf IEEE Eng Med Biol Soc

NanoRobotics Laboratory, Department of Computer and Software Engineering, École Polytechnique de Montréal, (Québec) Canada, H3C 3A7.

Published: March 2011

This paper investigates the influence of the magnetosome's chain, the motility, and the bacterial cell of MC-1 magnetotactic bacteria (MTB) on the Magnetic Resonance imaging (MRI) contrast. Because of its embedded magnetic nanoparticles, that allow magnetic guidance and imaging contrast generation under MRI, magnetotactic bacteria are being considered for therapeutic drug delivery to tumors. In order to separately investigate the different potential sources of contrast in MRI, we used three samples of MC-1 MTB. The first sample was constituted of magnetic bacteria that successfully synthesize magnetic nanoparticles. MC-1 bacteria that do not synthesize magnetosomes form the second sample while the third sample is constituted from dead MC-1 magnetic bacteria containing magnetic nanoparticle. T(2)-weighted magnetic resonance images were obtained for multiple echo times. T(2) was then estimated by fitting the signal intensity data for different echo time values to a monoexponential decay curve. It is found that nanoparticles synthesized by MC-1 MTB are the predominant source of contrast in MRI over motion and the cell body.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2010.5627106DOI Listing

Publication Analysis

Top Keywords

magnetotactic bacteria
12
magnetic resonance
12
magnetic
9
resonance imaging
8
magnetic nanoparticles
8
contrast mri
8
mc-1 mtb
8
sample constituted
8
magnetic bacteria
8
bacteria synthesize
8

Similar Publications

Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features.

View Article and Find Full Text PDF

Ultrafiltration membranes are widely used in the treatment of surface water. However, membrane fouling is a core issue that needs to be addressed in its application. Magnetotactic bacteria (MTB) show early film-forming and magnetotactic behaviour in the presence of external magnetic fields.

View Article and Find Full Text PDF

Magnetotactic bacteria from diverse Pseudomonadota families biomineralize intracellular Ca-carbonate.

ISME J

January 2025

Université Aix-Marseille, CNRS, CEA, UMR7265 Institut de Biosciences and Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France.

Intracellular calcium carbonate formation has long been associated with a single genus of giant Gammaproteobacteria, Achromatium. However, this biomineralization has recently received increasing attention after being observed in photosynthetic Cyanobacteriota and in two families of magnetotactic bacteria affiliated with the Alphaproteobacteria. In the latter group, bacteria form not only intracellular amorphous calcium carbonates into large inclusions that are refringent under the light microscope, but also intracellular ferrimagnetic crystals into organelles called magnetosomes.

View Article and Find Full Text PDF

Amended Ferrozine Assay for Quantifying Magnetosome Iron Content in Magnetotactic Bacteria.

ACS Omega

December 2024

Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.

MSR-1 can biomineralize the magnetosome, nanoscale magnetite (FeO) surrounded by a lipid bilayer, inside the cell. The magnetosome chain(s) enables MSR-1 to move along with the magnetic field (magnetoaerotaxis). Due to its unique characteristics, MSR-1 has attracted attention for biotechnological applications.

View Article and Find Full Text PDF

The origins of light-independent magnetoreception in humans.

Front Hum Neurosci

November 2024

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

Article Synopsis
  • Earth's abundance of iron has been essential for the development of life, influencing biochemical processes and leading to the emergence of early life forms near hydrothermal vents.
  • Iron also plays a role in the evolution of organisms like magnetotactic bacteria, which can detect the Earth's geomagnetic field, showing adaptations beyond humans' conventional senses.
  • Research on species such as zebrafish and pigeons indicates that various life forms have specialized mechanisms for geomagnetic sensing, hinting at complex interactions in the brain related to magnetic fields and their implications for human magnetoreception.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!