The scientific and clinical value of a measure of complexity is potentially enormous because complexity appears to be lost in the presence of illness. The changes introduced by asthma in respiratory mechanics and control of breathing may result in modifications in the airflow pattern. These changes may be interesting clinically, since they can reduce the ability of the patient to perform daily life activities. In this paper, we examine the effect of elevated airway obstruction on the complexity of the airflow pattern of asthmatic patients using the approximate entropy method (ApEnQ). This study involved 5 healthy and asthmatics with normal spirometric exam (5), mild (5), moderate (6) and severe (5) airway obstruction. A significant (p〈0.002) reduction in ApEnQ was observed in asthmatic patients. This reduction was significantly correlated with spirometric indices of airway obstruction (R=0.60; p〈0.001). These results are in close agreement with pathophysiological fundamentals, and suggest that in asthmatic patients the airflow pattern becomes less complex, which may reduce the adaptability of the respiratory system to perform exercise associated with daily life activities. Furthermore, our findings also suggest that ApEnQ may help the clinical evaluation of asthmatic patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2010.5626547 | DOI Listing |
Int J Pharm
January 2025
School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
Intranasal drug delivery is a promising non-invasive method for administering both local and systemic medications. While previous studies have extensively investigated the effects of particle size, airflow dynamics, and deposition locations on deposition efficiency, they have not focused on the thickness of deposited particles, which can significantly affect drug dissolution, absorption and therapeutic efficacy. This study investigates the deposition patterns of dry powder particles within the nasal airway, specifically examining how factors such as flow rates, particle size, and particle cohesiveness influence deposition patterns and their thickness.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
Odor perception plays a critical role in early human development, but the underlying neural mechanisms are not fully understood. To investigate these, we presented appetitive and aversive odors to infants of both sexes at one month of age while recording functional magnetic resonance imaging (fMRI) and nasal airflow data. Infants slept during odor presentation to allow MRI scanning.
View Article and Find Full Text PDFLancet Reg Health West Pac
January 2025
Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
J Occup Environ Hyg
January 2025
Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran.
The pathogenic potential of airborne particles carrying the SARS-CoV-2 viral genome was examined by considering the size distribution of airborne particles at given distances from the respiratory zone of an infected patient after coughing or sneezing with a focus on time, temperature, and relative humidity. The results show an association between the size distribution of airborne particles, particularly PM and PM, and the presence of viral genome in different stations affected by the distance from the respiratory zone and the passage of time. The correlation with time was strong with all the dependent factors except PM.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
Inspired by the adhesion differences on the surfaces of fresh and dried rose petals, a rose bionic self-cleaning fog collector (RBSC) was designed and prepared to realize a self-driven fog harvesting function. The droplet detachment iteration rate was revealed by the regulating mechanism of the surface adhesion force of the RBSC and the influence of bionic texture parameters, as demonstrated through the fog harvesting experiment and droplet detachment failure analysis. Through the surface adhesion force regulation, the probability of droplet dissipation with the airflow is reduced by increasing the falling droplets' mass, and the single surface fog capture efficiency is up to 740 mg cm h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!