Learning cellular texture features in microscopic cancer cell images for automated cell-detection.

Annu Int Conf IEEE Eng Med Biol Soc

Biomedical Data Analysis Group, Software Competence Center Hagenberg GmbH, Softwarepark 21, A-4232, Austria.

Published: March 2011

In this paper we present a new approach for automated cell detection in single frames of 2D microscopic phase contrast images of cancer cells which is based on learning cellular texture features. The main challenge addressed in this paper is to deal with clusters of cells where each cell has a rather complex appearance composed of sub-regions with different texture features. Our approach works on two different levels of abstraction. First, we apply statistical learning to learn 6 different types of different local cellular texture features, classify each pixel according to them and we obtain an image partition composed of 6 different pixel categories. Based on this partitioned image we decide in a second step if pre-selected seeds belong to the same cell or not. Experimental results show the high accuracy of the proposed method and especially average precision above 95%.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2010.5626299DOI Listing

Publication Analysis

Top Keywords

texture features
16
cellular texture
12
learning cellular
8
texture
4
features
4
features microscopic
4
microscopic cancer
4
cell
4
cancer cell
4
cell images
4

Similar Publications

ShaderNN: A Lightweight and Efficient Inference Engine for Real-time Applications on Mobile GPUs.

Neurocomputing (Amst)

January 2025

Department of Electrical and Computer Engineering, University of Maryland at College Park, 8223 Paint Branch Dr, College Park, MD, 20740, USA.

Inference using deep neural networks on mobile devices has been an active area of research in recent years. The design of a deep learning inference framework targeted for mobile devices needs to consider various factors, such as the limited computational capacity of the devices, low power budget, varied memory access methods, and I/O bus bandwidth governed by the underlying processor's architecture. Furthermore, integrating an inference framework with time-sensitive applications - such as games and video-based software to perform tasks like ray tracing denoising and video processing - introduces the need to minimize data movement between processors and increase data locality in the target processor.

View Article and Find Full Text PDF

Background: Renal hemangioblastoma (HB) is a rare extra-central nervous system (CNS) tumor, typically not linked to Von Hippel-Lindau (VHL) Syndrome, and its underlying genetic drivers and molecular mechanisms remain elusive. The objective of this study is to investigate the clinicopathological features and molecular genetic changes of primary renal hemangioblastomas.

Methods: Herein, the clinical, imaging, clinicopathological features, and immunophenotype in 3 cases of renal HB were retrospectively analyzed.

View Article and Find Full Text PDF

Node Reporting and Data System 1.0 (Node-RADS) for the Assessment of Oncological Patients' Lymph Nodes in Clinical Imaging.

J Clin Med

January 2025

Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy.

The assessment of lymph node (LN) involvement with clinical imaging is a key factor in cancer staging. Node Reporting and Data System 1.0 (Node-RADS) was introduced in 2021 as a new system specifically tailored for classifying and reporting LNs on computed tomography (CT) and magnetic resonance imaging scans.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most lethal cancers worldwide, and its early diagnosis is critical for improving patient survival rates. However, the extraction of key information from complex medical images and the attainment of high-precision classification present a significant challenge. In the field of signal processing, texture-rich images typically exhibit periodic patterns and structures, which are manifested as significant energy concentrations at specific frequencies in the frequency domain.

View Article and Find Full Text PDF

Recent advancements in Earth Observation sensors, improved accessibility to imagery and the development of corresponding processing tools have significantly empowered researchers to extract insights from Multisource Remote Sensing. This study aims to use these technologies for mapping summer and winter Land Use/Land Cover features in Cuenca de la Laguna Merín, Uruguay, while comparing the performance of Random Forests, Support Vector Machines, and Gradient-Boosting Tree classifiers. The materials include Sentinel-2, Sentinel-1 and Shuttle Radar Topography Mission imagery, Google Earth Engine, training and validation datasets and quoted classifiers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!