Age-related deficits of dual-task walking: the role of foot vision.

Gait Posture

Institute of Physiology and Anatomy, German Sport University, 50933 Cologne, Germany.

Published: February 2011

Previous studies found that age-related deficits of dual-task walking emerge with secondary tasks that require substantial visual processing, but are absent with tasks that require little or no visual processing. We evaluated whether this is so because visual tasks typically interfere with foot vision, on which older persons depend more heavily than young ones. Young (25±3 years) and older (69±5 years) subjects walked along a straight path and checked boxes on a handheld panel, separately or concurrently. The panel was either transparent or opaque, thus allowing or blocking vision of the feet, respectively. We quantified subjects' performance by spatial and temporal gait measures, and as the speed of checking. An analysis of variance revealed significant effects of age and of condition (single, dual) for several gait measures, as well as for checking speed. The dual-task costs (ǀdual-singleǀ/single) averaged 0.04±0.14 in younger and 0.33±0.30 in older subjects; this age difference was significant in a t-test (p<0.01). Most importantly, performance measures obtained with the transparent and with the opaque panel were not significantly different. In conclusion, our study confirms previous findings about age-related deficits of walking with a concurrent visual task, documents for the first time that these deficits influence the entire spatio-temporal gait structure, but provides no support for the notion that they reflect an increased dependence on foot vision.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2010.10.095DOI Listing

Publication Analysis

Top Keywords

age-related deficits
8
deficits dual-task
8
dual-task walking
8
foot vision
8
tasks require
8
visual processing
8
gait measures
8
walking role
4
role foot
4
vision previous
4

Similar Publications

Very-light-intensity exercise as minimal intensity threshold for activating dorsal hippocampal neurons: Evidence from rat physiological exercise model.

Biochem Biophys Res Commun

December 2024

Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan; Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan. Electronic address:

Exercise benefits the brain, particularly the learning and memory center-the dorsal hippocampus (dHPC)-and holds promise for therapeutic applications addressing age-related cognitive deficits. While moderate-to-vigorous-intensity exercise is commonly recommended for health benefits, our translational research proposes the effectiveness of very-light-intensity exercise in enhancing cognitive functions. However, the intensity-dependent characteristics of HPC activation have yet to be fully delineated; therefore, there is no evidence of whether such easily accessible exercises for people of all ages and most fitness levels can activate HPC neurons.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) identified the ATP binding cassette subfamily A member 7 (ABCA7) gene as increasing risk for Alzheimer's disease (AD). ABC proteins transport various molecules across extra and intra-cellular membranes. ABCA7 is part of the ABC1 subfamily and is expressed in brain cells including neurons, astrocytes, microglia, endothelial cells and pericytes.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Wollongong, Wollongong, NSW, Australia.

Background: Brain iron dyshomeostasis has been observed in behavioral deficits relevant to neurodegenerative diseases such as Alzheimer's disease (AD), but it remains unclear whether it is a primary cause or an epiphenomenon of disease.

Method: We assessed the effects of brain iron dyshomeostasis on spatial cognition and cognitive flexibility using the IntelliCage system, recognition memory using novel object recognition tasks and anxiety-like behavior using the open field and elevated plus maze tests. We investigated these phenotypes in a HfexTfr2 mouse model of brain iron dyshomeostasis alone (Iron) or combined with an APP/PS1 model of Alzheimer's Aβ amyloidosis (Aβ+Iron), compared with APP/PS1 mice with Aβ amyloidosis alone (Aβ) or wildtype controls.

View Article and Find Full Text PDF

Background: Aging is a time-dependent deterioration of physiological functions that occurs in both humans and animals. Within the brain, aging cells gradually become dysfunctional through a complex interplay of intrinsic and extrinsic factors, ultimately leading to behavioral deficits and enhanced risk of neurodegenerative diseases such as Alzheimer's disease (AD). The characteristics of normal aging are distinct from those associated with age-related diseases and it is important to understand the processes that contribute to this pathological divergence.

View Article and Find Full Text PDF

Background: Exposures to hazardous noise causes irreversible injury to the structures of the inner ear, leading to changes in hearing and balance function with strong links to age-related cognitive impairment. While the role of noise-induced hearing loss in long-term health consequences, such as progression or development of Alzheimer's Disease (AD) has been suggested, the underlying mechanisms and behavioral and cognitive outcomes or therapeutic solutions to mitigate these changes remain understudied. This study aimed to characterize the association between blast exposure, hearing loss, and the progression of AD pathology, and determine the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!