Stir bar sorptive extraction of diclofenac from liquid formulations: a proof of concept study.

J Pharm Biomed Anal

PKPD Core Facility, School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, United Kingdom.

Published: March 2011

A new stir bar sorptive extraction (SBSE) technique coupled with HPLC-UV method for quantification of diclofenac in pharmaceutical formulations has been developed and validated as a proof of concept study. Commercially available polydimethylsiloxane stir bars (Twister™) were used for method development and SBSE extraction (pH, phase ratio, stirring speed, temperature, ionic strength and time) and liquid desorption (solvents, desorption method, stirring time etc) procedures were optimised. The method was validated as per ICH guidelines and was successfully applied for the estimation of diclofenac from three liquid formulations viz. Voltarol(®) Optha single dose eye drops, Voltarol(®) Ophtha multidose eye drops and Voltarol(®) ampoules. The developed method was found to be linear (r=0.9999) over 100-2000ng/ml concentration range with acceptable accuracy and precision (tested over three QC concentrations). The SBSE extraction recovery of the diclofenac was found to be 70% and the LOD and LOQ of the validated method were found to be 16.06 and 48.68ng/ml, respectively. Furthermore, a forced degradation study of a diclofenac formulation leading to the formation of structurally similar cyclic impurity (indolinone) was carried out. The developed extraction method showed comparable results to that of the reference method, i.e. method was capable of selectively extracting the indolinone and diclofenac from the liquid matrix. Data on inter and intra stir bar accuracy and precision further confirmed robustness of the method, supporting the multiple re-use of the stir bars.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2010.10.025DOI Listing

Publication Analysis

Top Keywords

stir bar
12
method
10
bar sorptive
8
sorptive extraction
8
diclofenac liquid
8
liquid formulations
8
proof concept
8
concept study
8
stir bars
8
sbse extraction
8

Similar Publications

Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.

View Article and Find Full Text PDF

Correlating Microbial Dynamics with Key Metabolomic Profiles in Three Submerged Culture-Produced Vinegars.

Foods

December 2024

Department of Agricultural Chemistry, Edaphology, and Microbiology, Microbiology Area, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain.

Although vinegar is a product obtained by a well-known bioprocess from a technical point of view, the complex microbiota responsible for its production and their involvement in the organoleptic profiles are not clear yet. In this work, three acetification profiles in submerged culture using both synthetic and raw materials from Andalusia (Spain) were characterized by metagenomic (16S rRNA amplicon sequencing) and metabolomic tools (stir-bar sorptive extraction with thermo-desorption coupled to gas chromatography-mass spectrometry (SBSE-TD-GC-MS) and high-performance liquid chromatography (HPLC)). A total of 29 phyla, 208 families, and many more genera were identified, comprising bacteria and archaea as well as 75 metabolites, including minor volatile compounds, amino acids, biogenic amines, and other nitrogenous compounds.

View Article and Find Full Text PDF

In this study, a novel imidazolium-based ionic liquid (IL) coating was developed for stir bar sorptive extraction (SBSE) using a sol-gel method. The effects of different counterions, conditioning temperatures and polymer compositions were investigated. The stir bar with bis((trifluoromethyl)sulfonyl) amide 1-butyl-3-(3-(triethoxysilyl)propyl)-1H-imidazol-3-ium showed good mechanical and thermal stability with high resistance to water solubilization.

View Article and Find Full Text PDF

A covalent organic framework (COF) based on imine was synthesized using 2,5-dihexoxyterephthalaldehyde (DHT) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as starting materials. The TAPB-DHT-COF exhibited satisfactory chemical stability, making it a promising adsorbing material for stir bar sorptive extraction (SBSE) of four estrogens, including estrone (E1), β-estradiol (E2), hexestrol (HES), and mestranol (MeEE2), in ambient water samples. The extracted analytes were subsequently analyzed using a high-performance liquid chromatography-diode array detector (HPLC-DAD).

View Article and Find Full Text PDF

Uncovering characteristic and enantiomeric distribution of volatile components in Huangshan Maofeng and Zhejiang baked green teas.

Food Chem

February 2025

Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China. Electronic address:

Article Synopsis
  • Huangshan Maofeng (HSMF) is a well-known baked green tea from Anhui, China, recognized for its fresh flavor, while Zhejiang specializes in green tea production.
  • The study used advanced techniques like stir bar sorptive extraction and gas chromatography-mass spectrometry (GC-MS) to examine the aroma compounds and enantiomeric distribution in HSMF and Zhejiang baked green tea (ZJ-BGT).
  • Unique volatile compounds were found in both tea types, and certain compounds correlated with HSMF quality, highlighting specific enantiomers like S-jasmine lactone in HSMF that enhances flavor.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!