Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genetic modulation of glucocorticoid receptor (GR) function in the brain using transgenic and gene knockout mice has yielded important insights into many aspects of GR effects on behavior and neuroendocrine responses, but significant limitations regarding interpretation of region-specific and temporal requirements remain. Here, we summarize the behavioral phenotype associated with two knockout mouse models to define the role of GRs specifically within the forebrain and amygdala. We report that forebrain-specific GR knockout mice exhibit impaired negative feedback regulation of the hypothalamic-pituitary-adrenal (HPA) axis and increased despair- and anxiety-like behaviors. In addition, mice with a disruption of GR specifically within the central nucleus of the amygdala (CeA) are deficient in conditioned fear behavior. Overall, these models serve as beneficial tools to better understand the biology of GR signaling in the normal stress response and in mood disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172614 | PMC |
http://dx.doi.org/10.1016/j.mce.2010.11.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!