Gold nanoparticles (Au-NPs) are usually used to amplify surface plasmon resonance (SPR) signals, however, the serious nonspecific adsorption has largely limited their practical applications. Here, we developed a novel Au-NPs enhanced biosensor without the effect of nonspecific adsorption: cutting Au-NPs off from the biosensor surface by RsaI endonuclease. In order to further improve the sensitivity, the probe DNA was designed specially. After the cleavage reaction, the residual probe DNA formed hairpin structure, which also resulted in a great change in SPR dip shift. Then, with the coaction of Au-NPs and conformation change of probe DNA, the SPR signal was amplified greatly. Using this method, we monitored the process of DNA cleavage in real-time and achieved a detection level of 5×10(-8) M. Moreover, the result of X-ray photoelectron spectroscopy (XPS) experiment further confirmed that large nonspecific adsorption existed. However, because SPR recorded a process in which the Au-NPs were cut off, the serious nonspecific adsorption did not affect the experimental result.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2010.10.035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!