Percutaneous Aortic Valve (PAV) replacement is an attractive alternative to open heart surgery, especially for patients considered to be poor surgical candidates. Despite this, PAV replacement still has its limitations and associated risks. Bioprosthetic heart valves still have poor long-term durability due to calcification and mechanical failure. In addition, the implantation procedure often presents novel challenges, including damage to the expandable stents and bioprosthetic leaflets. In this study, a simplified version of Fung's elastic constitutive model for skin, developed by Sun and Sacks, was implemented using finite element analysis (FEA) and applied to the modelling of bovine and kangaroo pericardium. The FEA implementation was validated by simulating biaxial tests and by comparing the results with experimental data. Concepts for different PAV geometries were developed by incorporating valve design and performance parameters, along with stent constraints. The influence of effects such as different leaflet material, material orientation and abnormal valve dilation on the valve function was investigated. The stress distribution across the valve leaflet was also examined to determine the appropriate fibre direction for the leaflet. The simulated attachment forces were compared with suture tearing tests performed on the pericardium to evaluate suture density. It is concluded that kangaroo pericardium is suitable for PAV applications, and superior to bovine pericardium, due to its lower thickness and greater extensibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2010.09.009 | DOI Listing |
BMC Oral Health
January 2025
Department of Prosthetic Dentistry, Biomaterials Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt.
Purpose: Investigating high performance thermoplastic polymers as substitutes to titanium alloy, in fabrication of implants and attachments to support mandibular overdenture, aiming to overcome stress shielding effect of titanium alloy implants. AIM OF STUDY: Assessment of stress distribution in polymeric prosthetic components and bone around polymeric implants, in case of implant-supported mandibular overdenture.
Materials And Methods: 3D finite element model was established for mandibular overdenture, supported bilaterally by two implants at canine region, and retained by two ball attachments.
Nat Commun
January 2025
School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China.
Dielectric polymer capacitors suffer from low discharged energy density and efficiency due to their low breakdown strength, small dielectric constant and large electric hysteresis. Herein, a synergistic enhancement strategy is proposed to significantly increase both breakdown strength and dielectric constant while suppressing hysteresis, through introducing 2-dimensional bismuth layer-structured NaBiTiO micro-sheets and designing a unique bilayer structure. Excitingly, an ultra-high discharged energy density of 25.
View Article and Find Full Text PDFUltrasonics
January 2025
Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, UK. Electronic address:
A new focussed ultrasound surgery (FUS) transducer for soft tissue ablation is proposed, with a miniaturised configuration that can be readily integrated with a surgical robot. The transducer fills a gap in FUS technology at this size, with capability for acoustic focus steering within a very simple transducer configuration. Miniaturisation is enabled by the incorporation of an acoustic Fresnel lens as the focussing element driven by a single piezoceramic disc.
View Article and Find Full Text PDFPLoS One
January 2025
Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin Chengjian University, Tianjin, China.
J Endovasc Ther
January 2025
Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands.
Purpose: The goal of the study described in this protocol is to build a multimodal artificial intelligence (AI) model to predict abdominal aortic aneurysm (AAA) shrinkage 1 year after endovascular aneurysm repair (EVAR).
Methods: In this retrospective observational multicenter study, approximately 1000 patients will be enrolled from hospital records of 5 experienced vascular centers. Patients will be included if they underwent elective EVAR for infrarenal AAA with initial assisted technical success and had imaging available of the same modality preoperatively and at 1-year follow-up (CTA-CTA or US-US).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!