A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Muscarinic receptors within the ventromedial hypothalamic nuclei modulate metabolic rate during physical exercise. | LitMetric

Muscarinic receptors within the ventromedial hypothalamic nuclei modulate metabolic rate during physical exercise.

Neurosci Lett

Endocrinology and Metabolism Laboratory, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.

Published: January 2011

The involvement of muscarinic cholinoceptors within the ventromedial hypothalamic nuclei (VMH) on the exercise-induced increase in oxygen consumption (VO(2)) was investigated. Rats were fitted with bilateral cannulae into the VMH for local delivery of drugs. On the day of the experiments, the animals were submitted to running exercise (20 m/min; 5% grade) until the point of fatigue. VO(2) was continuously measured after bilateral injections of either 0.2 μL of 5 × 10(-9)mol methylatropine or 0.15M NaCl solution into the VMH. Control experiments were conducted in freely moving rats on the treadmill. Muscarinic blockade within the VMH reduced time to fatigue by 32% and enhanced the increase in VO(2) from the 8th until the 17th min of exercise when compared to the control trial. In fact, time to fatigue was negatively correlated to the rate of increase in VO(2) (r(2)=0.747; P<0.001). However, bilateral injections of methylatropine in freely moving rats did not change VO(2) in comparison to saline injections. In conclusion, muscarinic cholinoceptors within the VMH are activated during exercise to modulate the increase in metabolic rate. Furthermore, blocking muscarinic transmission leads to a faster increase in VO(2) that is associated with the early interruption of exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2010.11.031DOI Listing

Publication Analysis

Top Keywords

ventromedial hypothalamic
8
hypothalamic nuclei
8
time fatigue
8
increase vo2
8
muscarinic receptors
4
receptors ventromedial
4
nuclei modulate
4
modulate metabolic
4
metabolic rate
4
rate physical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!