Objectives: Haemophilus influenzae is an important cause of invasive infection but contemporary data in non-selected populations is limited.

Methods: Population-based surveillance for Haemophilus influenzae bacteremia was conducted in seven regions in Australia, Canada, and Denmark during 2000-2008.

Results: The overall annual incidence rate was 1.31 per 100,000 population and type specific rates were 0.08 for H. influenzae serotype b (Hib), 0.22 for H. influenzae serotypes a, c-f (Hiac-f), and 0.98 per 100,000 for non-typeable H. influenzae (NTHi). Very young and old patients were at highest risk. The serotypes causing disease varied according to age with nearly all cases in the elderly due to NTHi. The presence of comorbid medical illness was common with 14%, 16%, and 29% patients having Charlson comorbidity scores of 1, 2, and ≥ 3, respectively. The 30-day all-cause case-fatality rate was 18%. Factors independently associated with death at 30-days in logistic regression analysis included male gender, hospital-onset disease, older age, and lower respiratory tract, central nervous system, or unknown focus of infection.

Conclusions: Haemophilus influenzae is an important cause of morbidity and mortality particularly with NTHi in the elderly. These data serve as a baseline to assess the future effectiveness of new preventative interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinf.2010.11.009DOI Listing

Publication Analysis

Top Keywords

haemophilus influenzae
16
influenzae bacteremia
8
influenzae
7
epidemiology haemophilus
4
bacteremia multi-national
4
multi-national population-based
4
population-based assessment
4
assessment objectives
4
objectives haemophilus
4
influenzae invasive
4

Similar Publications

Based on the inhibitory potencies from earlier reported tetrazole thioether analogs, we now describe the synthesis and inhibition of pyrazole-based inhibitors of -succinyl-l,l-2,6-diaminopimelic acid desuccinylase (DapE) from (DapE). The most potent pyrazole analog bears an aminopyridine amide with an IC of 17.9 ± 8.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has significantly altered the etiological spectrum and epidemiological characteristics of pediatric respiratory diseases, and a profound understanding of these changes is crucial for guiding clinical treatment. The purpose of this study is to analyze the etiological patterns and epidemiological features of pathogens in bronchoalveolar lavage fluid (BALF) from children with pediatric lower respiratory tract infections (LRTIs) after the COVID-19 pandemic, with the aim of providing effective therapeutic evidence for clinical practice.

Methods: This study enrolled pediatric patients diagnosed with LRTIs who were treated and underwent BALF pathogen detection at our hospital from June 1, 2023, to June 1, 2024.

View Article and Find Full Text PDF

: Acute otitis media (AOM) is a common pediatric infection worldwide and is the primary basis for pediatric primary care visits and antibiotic prescriptions in children. Current licensed vaccines have been incompletely ineffective at reducing the global burden of AOM, underscoring a major unmet medical need. The complex etiology of AOM presents additional challenges for vaccine development, as it can stem from multiple bacterial species including , , and .

View Article and Find Full Text PDF

IgA1 protease is one of the virulence factors of , and other pathogens causing bacterial meningitis. The aim of this research is to create recombinant proteins based on fragments of the mature IgA1 protease A-P from serogroup B strain H44/76. These proteins are potential components of an antimeningococcal vaccine for protection against infections caused by pathogenic strains of and other bacteria producing serine-type IgA1 proteases.

View Article and Find Full Text PDF

: The development of a five-in-one vaccine microneedle patch (five-in-one MN patch) aims to address challenges in administering vaccines against Diphtheria (DT), Tetanus (TT), Pertussis (wP), Hepatitis B (HBsAg), and type b (Hib). Combining multiple vaccines into a single patch offers a novel solution to improve vaccine accessibility, stability, and delivery efficiency, particularly in resource-limited settings. : The five-in-one MN patch consists of four distinct microneedle arrays: DT and TT vaccines are coated together on one array, while wP, HepB, and Hib vaccines are coated separately on individual arrays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!