BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2010.10.019 | DOI Listing |
Nat Commun
January 2025
Cary Institute of Ecosystem Studies, Millbrook, NY, USA.
Previous estimates of deep soil inorganic nitrogen (N) reservoirs have been mainly limited to desert soils, however, recent evidence suggests that deep soil pools are far more ubiquitous across biomes and therefore may be important for global N budgets. Here, we used observations from 280 deep soil profiles (2-205 m) across a wide array of ecosystem and land cover types to seek insight into the full geospatial variation of deep soil nitrate. Using a random forest machine learning approach we estimate a total deep soil nitrate pool of 15.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
Voronezh State University, Voronezh, Russia.
Creation and long-term in vitro maintenance of valuable genotype collection is one of the modern approach to conservation of valuable gene pool of woody plants. However, during prolonged cultivation, genetic variability of cells and tissues may accumulate and lead to the loss of valuable characteristics of parental plants. It is therefore important to assess the genetic (including cytogenetic) stability of collection clones.
View Article and Find Full Text PDFChembiochem
January 2025
University of Freiburg: Albert-Ludwigs-Universitat Freiburg, Institute of Pharmaceutical Sciences, Albertstr. 25, 79104, Freiburg, GERMANY.
Polyphosphate kinases (PPK) play crucial roles in various biological processes, including energy storage and stress responses, through their interaction with inorganic polyphosphate (polyP) and the intracellular nucleotide pool. Members of the PPK family 2 (PPK2s) catalyse polyP‑consuming phosphorylation of nucleotides. In this study, we characterised two PPK2 enzymes from Bacillus cereus (BcPPK2) and Lysinibacillus fusiformis (LfPPK2) to investigate their substrate specificity and potential for selective nucleotide synthesis.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
The segmentation hypothesis, a framework for understanding plant drought adaptive strategy, has long been based on hydraulic resistance and vulnerability. Storage of water and carbohydrate resources is another critical function and shapes plant drought adaption and fitness together with hydraulic efficiency and vulnerability. However, patterns and implications of the interdependency of stored water and carbohydrate resources in the context of the segmentation hypothesis are poorly understood.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada.
Synthetic ssDNA oligonucleotides hold great potential for various applications, including DNA aptamers, DNA digital data storage, DNA origami, and synthetic genomes. In these contexts, precise control over the synthesis of the ssDNA strands is essential for generating combinatorial sequences with user-defined parameters. Desired features for creating synthetic DNA oligonucleotides include easy manipulation of DNA strands, effective detection of unique DNA sequences, and a straightforward mechanism for strand elongation and termination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!