The main goal of this study was to determine the optimal strategy for a real-time nonlinear contrast mode for small-animal imaging at high frequencies, on a new array-based micro-ultrasound system. Previously reported contrast imaging at frequencies above 15 MHz has primarily relied on subtraction schemes involving B-mode image data. These approaches provide insufficient contrast to tissue ratios under many imaging conditions. In this work, pulse inversion, amplitude modulation and combinations of these were systematically investigated for the detection of nonlinear fundamental and subharmonic signal components to maximize contrast-to-tissue ratio (CTR) in the 18-24 MHz range. From in vitro and in vivo measurements, nonlinear fundamental detection with amplitude modulation provided optimal results, allowing an improvement in CTR of 13 dB compared with fundamental imaging. Based on this detection scheme, in vivo parametric images of murine kidneys were generated using sequences of nonlinear contrast images after intravenous bolus injections of microbubble suspensions. Initial parametric images of peak enhancement (PE), wash-in rate (WiR) and rise time (RT) are presented. The parametric images are indicative of blood perfusion kinetics, which, in the context of preclinical imaging with small animals, are anticipated to provide valuable insights into the progression of human disease models, where blood perfusion plays a critical role in either the diagnosis or treatment of the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2010.08.012 | DOI Listing |
Animals survive in dynamic environments changing at arbitrary timescales, but such data distribution shifts are a challenge to neural networks. To adapt to change, neural systems may change a large number of parameters, which is a slow process involving forgetting past information. In contrast, animals leverage distribution changes to segment their stream of experience into tasks and associate them with internal task abstracts.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Engineering, Ulster University, York Street, Belfast, Northern Ireland, BT15 1AP, UK.
Recent advancements in atomic force microscopy (AFM) have enabled detailed exploration of materials at the molecular and atomic levels. These developments, however, pose a challenge: the data generated by microscopic and spectroscopic experiments are increasing rapidly in both size and complexity. Extracting meaningful physical insights from these datasets is challenging, particularly for multilayer heterogeneous nanoscale structures.
View Article and Find Full Text PDFThe breakthroughs in communication distance and data rate have been eagerly anticipated by scientists in the area of underwater wireless optical communication (UWOC), which is seriously limited by the obvious aquatic attenuation in underwater channels. The high-power laser source and ultra-sensitive photodetector are straightforward in extending the UWOC distance. However, nonlinear impairments caused by bandwidth-limited high-power transmitters and sensitive receivers severely degrade the data rate of long-distance UWOC.
View Article and Find Full Text PDFVolterra nonlinear equalizer (VNE) is widely used in intensity modulation and direct detection (IM/DD) systems because it employs multi-order operations to effectively capture the nonlinear characteristics of signals as a generic tool. In the specific directly-modulated laser with direct detection (DML-DD) link, the interaction between the chirp of DML and chromatic dispersion (CD) can be modeled as composite second-order (CSO) distortion. By incorporating the CSO model into the nonlinear equalizer, it is possible to better extract the feature of the end-to-end channel, achieving superior performance with lower complexity.
View Article and Find Full Text PDFOptical nonreciprocal devices are critical components in integrated photonic systems and scalable quantum technologies. We propose an all-optical approach to achieve integrated optical nonreciprocity utilizing a moving index grating. The grating is generated in a nonlinear optical waveguide through the Kerr effect by driving the waveguide with two counter-propagating pump fields of slightly different frequencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!