Introduction: Sarcoidosis is a multisystem granulomatous disease for which the association with mycobacteria continues to strengthen. It is hypothesized that a single, poorly degradable antigen is responsible for sarcoidosis pathogenesis. Several reports from independent groups support mycobacterial antigens having a role in sarcoidosis pathogenesis. To identify other microbial targets of the adaptive immune response, we tested the ability of CD4+ and CD8+ T cells to recognize multiple mycobacterial antigens.

Methods: Fifty-four subjects were enrolled in this study: 31 sarcoidosis patients, nine non-tuberculosis mycobacterial (NTM) infection controls, and 14 PPD- controls. Using flow cytometry, we assessed for Th1 immune responses to ESAT-6, katG, Ag85A, sodA, and HSP.

Results: Alveolar T-cells from twenty-two of the 31 sarcoidosis patients produced a CD4+ response to at least one of ESAT-6, katG, Ag85A, sodA, or HSP, compared to two of 14 PPD- controls (p = 0.0008) and five of nine NTM controls (p = 0.44), while eighteen of the 31 sarcoidosis subjects tested produced a CD8+ response to at least one of the mycobacterial antigens compared to two of 14 PPD- controls (p = 0.009) and three of nine NTM controls (0.26). Not only did the BAL-derived T cells respond to multiple virulence factors, but also to multiple, distinct epitopes within a given protein. The detection of proliferation upon stimulation with the mycobacterial virulence factors demonstrates that these responses are initiated by antigen specific recognition.

Conclusions: Together these results reveal that antigen-specific CD4+ and CD8+ T cells responses to multiple mycobacterial epitopes are present within sites of active sarcoidosis involvement, and that these antigen-specific responses are present at the time of diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999599PMC
http://dx.doi.org/10.1186/1465-9921-11-161DOI Listing

Publication Analysis

Top Keywords

multiple mycobacterial
12
mycobacterial antigens
12
ppd- controls
12
targets adaptive
8
adaptive immune
8
immune response
8
sarcoidosis
8
sarcoidosis pathogenesis
8
cd4+ cd8+
8
cd8+ cells
8

Similar Publications

Tuberculosis (TB) remains a major global threat, with 10 million new cases and 1.5 million deaths each year. In multidrug-resistant tuberculosis (MDR-TB), resistance is most commonly observed against isoniazid (INH) and rifampicin (RIF), the two frontline drugs.

View Article and Find Full Text PDF

Introduction: Periprosthetic joint infections (PJIs) of the shoulder complicate approximately 0.7% of primary and 15.4% of revision shoulder arthroplasties.

View Article and Find Full Text PDF

Unveiling novel pathways for drug discovery forms the foundation of a new era in the combat against tuberculosis. The discovery of a novel drug, bedaquiline, targeting mycobacterial ATP synthase highlighted the targetability of the energy metabolism pathway. The significant potency of bedaquiline against heterogeneous population of marks ATP synthase as an important complex of the electron transport chain.

View Article and Find Full Text PDF

Objective: The global prevalence of nontuberculous mycobacterial pulmonary disease (NTM-PD) has been steadily increasing. A few small retrospective studies have reported a poor prognosis associated with chronic pulmonary aspergillosis (CPA) as a complication of NTM-PD. Furthermore, the prognostic impact of CPA may have been inadequately assessed due to differences in background factors.

View Article and Find Full Text PDF

Unlabelled: Mycobacterial cell envelopes are rich in unusual lipids and glycans that play key roles during infection and vaccination. The most abundant envelope glycolipid is trehalose dimycolate (TDM). TDM compromises the host response to mycobacterial species via multiple mechanisms, including inhibition of phagosome maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!