Background: The Hawaiian red algal flora is diverse, isolated, and well studied from a morphological and anatomical perspective, making it an excellent candidate for assessment using a combination of traditional taxonomic and molecular approaches. Acquiring and making these biodiversity data freely available in a timely manner ensures that other researchers can incorporate these baseline findings into phylogeographic studies of Hawaiian red algae or red algae found in other locations.
Results: A total of 1,946 accessions are represented in the collections from 305 different geographical locations in the Hawaiian archipelago. These accessions represent 24 orders, 49 families, 152 genera and 252 species/subspecific taxa of red algae. One order of red algae (the Rhodachlyales) was recognized in Hawaii for the first time and 196 new island distributional records were determined from the survey collections. One family and four genera are reported for the first time from Hawaii, and multiple species descriptions are in progress for newly discovered taxa. A total of 2,418 sequences were generated for Hawaiian red algae in the course of this study--915 for the nuclear LSU marker, 864 for the plastidial UPA marker, and 639 for the mitochondrial COI marker. These baseline molecular data are presented as neighbor-joining trees to illustrate degrees of divergence within and among taxa. The LSU marker was typically most conserved, followed by UPA and COI. Phylogenetic analysis of a set of concatenated LSU, UPA and COI sequences recovered a tree that broadly resembled the current understanding of florideophyte red algal relationships, but bootstrap support was largely absent above the ordinal level. Phylogeographic trends are reported here for some common taxa within the Hawaiian Islands and include examples of those with, as well as without, intraspecific variation.
Conclusions: The UPA and COI markers were determined to be the most useful of the three and are recommended for inclusion in future algal biodiversity surveys. Molecular data for the survey provide the most extensive assessment of Hawaiian red algal diversity and, in combination with the morphological/anatomical and distributional data collected as part of the project, provide a solid baseline data set for future studies of the flora. The data are freely available via the Hawaiian Algal Database (HADB), which was designed and constructed to accommodate the results of the project. We present the first DNA sequence reference collection for a tropical Pacific seaweed flora, whose value extends beyond Hawaii since many Hawaiian taxa are shared with other tropical areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3012605 | PMC |
http://dx.doi.org/10.1186/1471-2229-10-258 | DOI Listing |
Mol Biol Evol
January 2025
Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
A key trait of Eukarya is the independent evolution of complex multicellular (CM) in animals, plants, fungi, brown algae and red algae. This phenotype is characterized by the initial exaptation of cell-cell adhesion genes followed by the emergence of mechanisms for cell-cell communication, together with the expansion of transcription factor gene families responsible for cell and tissue identity. The number of cell types (NCT) is commonly used as a quantitative proxy for biological complexity in comparative genomics studies.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation.
View Article and Find Full Text PDFUnlabelled: Once considered rare in eukaryotes, polycistronic mRNA expression has been identified in kinetoplastids and, more recently, green algae, red algae, and certain fungi. This study provides comprehensive evidence supporting the existence of polycistronic mRNA expression in the apicomplexan parasite . Leveraging long-read RNA-seq data from different parasite strains and using multiple long-read technologies, we demonstrate the existence of defined polycistronic transcripts containing 2-4 protein encoding genes, several validated with RT-PCR.
View Article and Find Full Text PDFISME Commun
January 2025
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Antarctic snow harbors diverse microorganisms, including pigmented algae and bacteria, which create colored snow patches and influence global climate and biogeochemical cycles. However, the genomic diversity and metabolic potential of colored snow remain poorly understood. We conducted a genome-resolved study of microbiomes in colored snow from 13 patches (7 green and 6 red) on the Fildes Peninsula, Antarctica.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Lab of Breeding Biotechnology and Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Compared with green plants, brown algae are characterized by their ability to accumulate iodine, contributing to their ecological adaptability in high-iodide coastal environments. Vanadium-dependent haloperoxidase (V-HPO) is the key enzyme for iodine synthesis. Despite its significance, the evolutionary origin of V-HPO genes remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!